Example #1
0
    def main_train(self):
        with tf.Graph().as_default():
            with tf.Session() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 1000
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                for i in range(nrof_batches_per_epoch):
                    start_index = i * batch_size
                    end_index = min((i + 1) * batch_size, nrof_images)
                    paths_batch = path[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)

                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)

                # Training Started
                print('Training Started')
                model = SVC(kernel='linear', probability=True)
                model.fit(emb_array, label)

                class_names = [cls.name.replace('_', ' ') for cls in img_data]

                # Saving model
                with open(classifier_file_name, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                return classifier_file_name
Example #2
0
    def main_train(self):
        with tf.Graph().as_default():
            with tf.Session() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print("label")
                print(label)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 10000
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                #print(nrof_batches_per_epoch)
                #for i in range(nrof_batches_per_epoch):
                start_index = 0 * batch_size
                end_index = min((0 + 1) * batch_size, nrof_images)
                paths_batch = path[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)
                print("emb_array[0]")
                print(emb_array[0])
                class_names = [cls.name.replace('_', ' ') for cls in img_data]
                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)
                print('emb_array')
                print(emb_array)
                X_embedded = TSNE(n_components=2).fit_transform(emb_array)
                X_embedded -= X_embedded.min(axis=0)
                X_embedded /= X_embedded.max(axis=0)
                print("X_embedded")
                print(X_embedded)

                #for i in range(0, nrof_images-1):
                #    plt.plot(X_embedded[i, 0], X_embedded[i, 1],'bo')
                plt.legend(bbox_to_anchor=(1, 1))
                plt.show()
                out_dim = round(math.sqrt(nrof_images))
                out_res = 160
                to_plot = np.square(out_dim)
                grid = np.dstack(
                    np.meshgrid(np.linspace(0, 1, out_dim),
                                np.linspace(0, 1, out_dim))).reshape(-1, 2)
                cost_matrix = cdist(grid, X_embedded,
                                    "sqeuclidean").astype(np.float32)
                cost_matrix = cost_matrix * (100000 / cost_matrix.max())
                print(cost_matrix)
                #rids, cids = solve_dense(costs)
                #print(rids)
                print("zaczalem to robic")
                #row_ind, col_ind = linear_sum_assignment(cost_matrix)
                row_asses, col_asses, _ = lapjv(cost_matrix)
                #print("To cos")
                #print (col_asses)
                print("teraz to!")
                #print (row_ind)
                #print (col_ind)
                #for r,c in zip(row_ind, col_asses):
                #    print(r,c) # Row/column pairings
                grid_jv = grid[col_asses]
                out = np.ones((out_dim * out_res, out_dim * out_res, 3))
                print(grid_jv)

                for pos, img in zip(grid_jv, images[0:to_plot]):
                    h_range = int(np.floor(pos[0] * (out_dim - 1) * out_res))
                    w_range = int(np.floor(pos[1] * (out_dim - 1) * out_res))
                    out[h_range:h_range + out_res,
                        w_range:w_range + out_res] = image.img_to_array(img)
                print(out)
                im = image.array_to_img(out)
                im.save("obrazekV2.jpg", quality=100)
Example #3
0
 facenet.load_model(modeldir)
 images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
 embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
 phase_train_placeholder = tf.get_default_graph().get_tensor_by_name(
     "phase_train:0")
 embedding_size = embeddings.get_shape()[1]
 print('Extracting features of images for model')
 batch_size = 10000
 image_size = 160
 nrof_images = len(path)
 nrof_batches_per_epoch = int(math.ceil(1.0 * nrof_images / batch_size))
 emb_array = np.zeros((nrof_images, embedding_size))
 start_index = 0 * batch_size
 end_index = min((0 + 1) * batch_size, nrof_images)
 paths_batch = path[start_index:end_index]
 images = facenet.load_data(paths_batch, False, False, image_size)
 feed_dict = {images_placeholder: images, phase_train_placeholder: False}
 emb_array[start_index:end_index, :] = sess.run(embeddings,
                                                feed_dict=feed_dict)
 print("emb_array[0]")
 print(emb_array[0])
 class_names = [cls.name.replace('_', ' ') for cls in img_data]
 print('emb_array')
 print(emb_array)
 X_embedded = TSNE(n_components=2).fit_transform(emb_array)
 X_embedded -= X_embedded.min(axis=0)
 X_embedded /= X_embedded.max(axis=0)
 print("X_embedded")
 print(X_embedded)
 for i in range(0, nrof_images - 1):
     plt.plot(X_embedded[i, 0], X_embedded[i, 1], 'bo')
    def main_train(self):
        with tf.Graph().as_default():
            with tf.Session() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print("label")
                print(label)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 1000
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                print(nrof_batches_per_epoch)
                for i in range(nrof_batches_per_epoch):
                    start_index = i * batch_size
                    end_index = min((i + 1) * batch_size, nrof_images)
                    paths_batch = path[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)

                class_names = [cls.name.replace('_', ' ') for cls in img_data]
                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)
                print('emb_array')
                print(emb_array)
                X_embedded = TSNE(n_components=2).fit_transform(emb_array)
                print('X_embedded')
                print(X_embedded)
                faces_group = np.zeros((nrof_images, embedding_size))
                for i in range(0, nrof_images - 1):
                    print("i: ")
                    print(i)
                    j = label[i]
                    print("j: ")
                    print(j)
                    faces_group[j].append(X_embedded[i])
                    #plt.plot(X_embedded[i, 0], X_embedded[i, 1], label=name)#label=name)
                    #plt.scatter(X_embedded[i, 0], X_embedded[i, 1], label=name)
                for i in enumerate(set(faces_group)):
                    name = class_names[i]
                    plt.scatter(faces_group[i, 0],
                                faces_group[i, 1],
                                label=name)
                plt.legend(bbox_to_anchor=(1, 1))
                #plt.axis([-50, 50, -50, 50])
                plt.show()
                #time.sleep(5)
                #plt.imshow()
                # Training Started
                print('Training Started')
                model = SVC(kernel='linear', probability=True)
                model.fit(emb_array, label)

                print(class_names)
                # Saving model
                with open(classifier_file_name, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                return classifier_file_name
    def main_train(self):
        with tf.Graph().as_default():
            gpu_options = tf.GPUOptions(allow_growth=True)
            with tf.Session(config=tf.ConfigProto(
                    gpu_options=gpu_options,
                    log_device_placement=False)).as_default() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 100  #batch size 100
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                for i in range(nrof_batches_per_epoch):
                    start_index = i * batch_size
                    end_index = min((i + 1) * batch_size, nrof_images)
                    paths_batch = path[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)

                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)
                score_path = os.path.expanduser(self.score_path)

                # Training Started
                print('Training Started')
                #parameters tuning
                param_grid = {
                    'C': [1, 10, 100, 1000],
                    'gamma': [1, 0.1, 0.001, 0.0001],
                    'kernel': ['linear', 'rbf']
                }
                grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
                grid.fit(emb_array, label)
                best_param = grid.best_params_
                print('Best Parameters: ', best_param)

                print('Train Using Best Parameters...')
                model = SVC(C=best_param['C'],
                            gamma=best_param['gamma'],
                            kernel=best_param['kernel'],
                            probability=True)
                model.fit(emb_array, label)
                score = model.score(emb_array, label)
                print('Model Accuracy:', score)
                #Saving acc
                with open(score_path, 'w') as out_score:
                    out_score.write('Accuracy: {}\n '.format(score))

                class_names = [cls.name.replace('_', ' ') for cls in img_data]
                # Saving model
                with open(classifier_file_name, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                return classifier_file_name