from packer import Packer from fdates import parse P = Packer() P.d_yfi(1, "NDQ.AX") P.percentages(1, "close") # P.percentages(1, "close") # P.stacked(1, "close") # P.d_fred(2, "https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=OVXCLS&scale=left&cosd=2007-05-10&coed=2020-10-29&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Daily%2C%20Close&fam=avg&fgst=lin&fgsnd=2020-02-01&line_index=1&transformation=lin&vintage_date=2020-10-31&revision_date=2020-10-31&nd=2007-05-10", "OVXCLS") # P.remove_dots(2, "OVXCLS") P.d_yfi(2, "QQQ") P.percentages(2, "close") # print(P.datasets[1]["subsets"]) # P.stacked(2, "close") # P.inverse(2, "close") # P.add(2, "close", 0.02) # P.d_yfi(3, "NDQ.AX") P.minimize([1, 2], normalize=True) # our "callables" for date parsing our datasets def fred(input): return parse("year-month-day", str(input.split(" ")[0]), normalize=True) def yahoofin_dp(input):
from packer import Packer from fdates import parse P = Packer() P.d_csv( 1, url="https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=UNRATE&scale=left&cosd=1948-01-01&coed=2020-09-01&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Monthly&fam=avg&fgst=lin&fgsnd=2020-02-01&line_index=1&transformation=lin&vintage_date=2020-10-29&revision_date=2020-10-29&nd=1948-01-01", index="DATE", subset="UNRATE", name="number:Unemployment" ) P.percentages(1, "UNRATE") P.stacked(1, "UNRATE", inverse=True) P.d_csv( 2, url="https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=INDPRO&scale=left&cosd=1919-01-01&coed=2020-09-01&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Monthly&fam=avg&fgst=lin&fgsnd=2020-02-01&line_index=1&transformation=lin&vintage_date=2020-10-29&revision_date=2020-10-29&nd=1919-01-01", index="DATE", subset="INDPRO", name="number:Industrial Production" ) P.percentages(2, "INDPRO") P.stacked(2, "INDPRO", inverse=True) # P.d_csv( # 3, # url="https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=BAMLH0A0HYM2&scale=left&cosd=2015-10-28&coed=2020-10-28&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Daily%2C%20Close&fam=avg&fgst=lin&fgsnd=2020-02-01&line_index=1&transformation=lin&vintage_date=2020-10-29&revision_date=2020-10-29&nd=1996-12-31", # index="DATE", # subset="BAMLH0A0HYM2", # name="number:Option Spreads"
from packer import Packer from fdates import parse P = Packer() P.d_fred( 1, "https://fred.stlouisfed.org/graph/fredgraph.csv?bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=1168&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=RRSFS&scale=left&cosd=1992-01-01&coed=2020-09-01&line_color=%234572a7&link_values=false&line_style=solid&mark_type=none&mw=3&lw=2&ost=-99999&oet=99999&mma=0&fml=a&fq=Monthly&fam=avg&fgst=lin&fgsnd=2020-02-01&line_index=1&transformation=lin&vintage_date=2020-10-29&revision_date=2020-10-29&nd=1992-01-01", "RRSFS") P.percentages(1, "RRSFS") P.multiply(1, "RRSFS", 100) P.stacked(1, "RRSFS") # P.d_yfi(2, "^VIX") # P.percentages(2, "close") # P.inverse(2, "close") # P.add(2, "close", 0.02) P.minimize([1], normalize=True) # our "callables" for date parsing our datasets def nyfed_dp(input): s = str(input).split(":")[0].split("T")[0] return parse("year-month-day", s, normalize=True) def yahoofin_dp(input): return parse("year-month-day", str(input), normalize=True)