Example #1
0
if __name__ == '__main__':
    # read density map from mrc
    import mrcfile
    import iomap as IM
    rootdir = '../IOfile/map_single'
    v = IM.readMrcMapDir(rootdir)

    # get packing info
    import sys
    sys.path.append("..")
    import packing_single_sphere.simulate as SI
    import numpy as np
    import packing_single_sphere.simulate as SI
    target_name = '1bxn'
    packing_result = SI.packing_with_target(target_protein=target_name,
                                            random_protein_number=4)
    protein_name = packing_result['optimal_result']['pdb_id']
    x = packing_result['optimal_result']['x'] / 10
    y = packing_result['optimal_result']['y'] / 10
    z = packing_result['optimal_result']['z'] / 10
    print('initialization', packing_result['optimal_result']['initialization'])
    x0 = np.array(packing_result['optimal_result']['initialization'][0]) / 10
    y0 = np.array(packing_result['optimal_result']['initialization'][1]) / 10
    z0 = np.array(packing_result['optimal_result']['initialization'][2]) / 10
    box_size = packing_result['general_info']['box_size'] / 10

    # merge map to hugemap, save random angle in packing_result
    import map_tomo.merge_map as MM
    initmap, init_angle_list = MM.merge_map(v, protein_name, x0, y0, z0,
                                            box_size)
    packmap, pack_angle_list = MM.merge_map(v, protein_name, x, y, z, box_size)
Example #2
0
def simu_subtomo(op,
                 packing_op,
                 output,
                 save_tomo=0,
                 save_target=1,
                 save_tomo_slice=0):
    """
    :param
        op: parameter of convert pdb/ density map to tomogram
        packing_op: parameter of packing process
        output: path of output file
        save_tomo: 1 save, 0 not save, if the large subtomogram.mrc of the whole packing scene(including 5-10
            macromolecules) will be saved
        save_target: 1 save, 0 not save, if the subtomogram.mrc of the target will be saved
        save_tomo_slice: 1 save, 0 not save, if the sliced image will be saved.
    :return:
        target_simu_tomo = {'tomo': subtomogram of target macromolecule, .mrc file
                            'density_map': density map, .mrc file
                            'info': {'loc': coordinate of target macromolecule
                                    'rotate': the rotation angle of this macromolecule (ZYZ, Euler angle)
                                    'name': the name of a macromolecule}}

    the json file of packing result and target will be saved in '../IOfile/json'
    """
    from map_tomo import pdb2map as PM
    from map_tomo import iomap as IM
    from map_tomo import mrc2singlepic as MS
    from map_tomo import merge_map as MM
    from map_tomo import map2tomogram as MT
    from packing_single_sphere import simulate as SI

    # convert pdb to map
    # ms = PM.pdb2map(op['map'])
    # for n in ms:
    #     v = ms[n]
    #     IM.map2mrc(v, op['map']['map_single_path']+ '/{}.mrc'.format(n))

    # read density map from mrc
    # rootdir = op['map']['map_single_path']
    # v = IM.readMrcMapDir(rootdir)
    # print('read density map done')
    v = op['v']

    # get packing info
    target_name = packing_op['target']
    print("Name", target_name)
    packing_result = SI.packing_with_target(packing_op)
    print("Print", packing_result.keys())
    protein_name = packing_result['optimal_result']['pdb_id']
    x = packing_result['optimal_result']['x'] / 10
    y = packing_result['optimal_result']['y'] / 10
    z = packing_result['optimal_result']['z'] / 10
    # print('initialization',packing_result['optimal_result']['initialization'])
    x0 = np.array(packing_result['optimal_result']['initialization'][0]) / 10
    y0 = np.array(packing_result['optimal_result']['initialization'][1]) / 10
    z0 = np.array(packing_result['optimal_result']['initialization'][2]) / 10
    box_size = packing_result['general_info']['box_size'] / 10
    print('get packing info done')

    # merge map to hugemap, save random angle in packing_result
    initmap, init_angle_list = MM.merge_map(v, protein_name, np.int64(x0),
                                            np.int64(y0), np.int64(z0),
                                            np.int64(box_size))
    packmap, pack_angle_list = MM.merge_map(v, protein_name, np.int64(x),
                                            np.int64(y), np.int64(z),
                                            np.int64(box_size))
    packing_result['optimal_result']['initmap_rotate_angle'] = init_angle_list
    packing_result['optimal_result']['packmap_rotate_angle'] = pack_angle_list
    print('merge huge map done ')

    # save packing info
    with open(output['json']['pack'], 'w') as f:
        json.dump(packing_result, f, cls=MM.NumpyEncoder)
    print('save packing info')
    # convert packmap to tomogram
    tomo = MT.map2tomo(packmap, op['tomo'])
    print('convert to tomo')

    if save_tomo != 0:
        # save init & pack map to mrc
        IM.map2mrc(initmap, output['initmap']['mrc'])
        IM.map2mrc(packmap, output['packmap']['mrc'])
        # save init & pack map to png
        IM.map2png(initmap, output['initmap']['png'])
        IM.map2png(packmap, output['packmap']['png'])
        # save pack tomo to mrc and png
        IM.map2mrc(tomo, output['tomo']['mrc'])
        IM.map2png(tomo, output['tomo']['png'])

    # trim hugemap
    # trim_initmap = MM.trim_margin(initmap)
    # trim_packmap = MM.trim_margin(packmap)
    # trim_tomo = MM.trim_margin(tomo)
    # print('initmap shape',initmap.shape)
    # print('trimmed shape',trim_initmap.shape)
    # print('packmap shape',packmap.shape)
    # print('trimmed shape',trim_packmap.shape)
    # print('tomo shape',tomo.shape)
    # print('trimmed shape',trim_tomo.shape)
    # IM.map2mrc(trim_initmap, output['initmap']['trim'])
    # IM.map2mrc(trim_packmap, output['packmap']['trim'])
    # IM.map2mrc(trim_tomo, output['tomo']['trim'])

    # trim target
    i = protein_name.index(target_name)
    # print('i',i)
    target_packmap, loc_r = MM.trim_target(packmap,
                                           np.array([x[i], y[i],
                                                     z[i]]), op['target_size'])
    target_tomo, loc_r = MM.trim_target(tomo, np.array([x[i], y[i], z[i]]),
                                        op['target_size'], loc_r)
    if save_target != 0:
        IM.map2mrc(target_packmap, output['packmap']['target']['mrc'])
        IM.map2mrc(target_tomo, output['tomo']['target']['mrc'])
        IM.map2png(target_packmap, output['packmap']['target']['png'])
        IM.map2png(target_tomo, output['tomo']['target']['png'])
    print('trim target done')

    # save target info
    target_info = dict()
    target_info['loc'] = loc_r
    target_info['rotate'] = pack_angle_list[i]
    target_info['name'] = packing_op['target']
    with open(output['json']['target'], 'w') as f:
        json.dump(target_info, f, cls=MM.NumpyEncoder)
    print('get target info done')

    if save_tomo_slice != 0:
        # convert packmap & tomo to separate pictures
        MS.mrc2singlepic(output['packmap']['mrc'],
                         output['packmap']['png'] + 'packmap{}/'.format(num),
                         'packmap{}'.format(num))
        MS.mrc2singlepic(output['tomo']['mrc'],
                         output['tomo']['png'] + 'tomo{}/'.format(num),
                         'tomo{}'.format(num))

    target_simu_tomo = dict()
    target_simu_tomo['tomo'] = target_tomo
    target_simu_tomo['density_map'] = target_packmap
    target_simu_tomo['info'] = target_info
    print('all done')

    return target_simu_tomo
Example #3
0
def simu_subtomo(op,
                 packing_op,
                 output,
                 save_tomo=0,
                 save_target=1,
                 save_tomo_slice=0):
    '''

    :param op: parameter of convert pdb/ density map to tomogram
    :param packing_op: parameter of packing process
    :param output: path of output file
    :param save_tomget:  1 save, 0 not save, if the subtomogram.mrc of the target will be saved
    :param save_tomo_slice:  1 save, 0 not save, if the sliced image will be saved.
    :return:

        target_simu_tomo = { 'tomo' : subtomogram of target macromolecule, .mrc file
                         'density_map': density map, .mrc file
                         'info': {  'loc' : coordinate of target macromolecule
                                    'rotate' : the rotation angle of this macromolecule (ZYZ, Euler angle)
                                    'name' : the name of a macromolecule
                                  }
                        }

        the json file of packing result and target will be saved in '../IOfile/json'
    '''
    import datetime
    starttime = datetime.datetime.now()

    # # convert pdb to map
    # # If you already have the map to each single macromolecule,
    # # then change the op['map']['map_single_path'] to the path of the single density map.
    # # If you need to generate map yourself, please uncomment line 89-99 and comment line 100.
    # import map_tomo.pdb2map as PM
    # ms = PM.pdb2map(op['map'])
    # for n in ms:
    #     v = ms[n]
    #     IM.map2mrc(v, op['map']['map_single_path']+ '/{}.mrc'.format(n))
    #
    # # read density map from mrc
    # rootdir = op['map']['map_single_path']
    # v = IM.readMrcMapDir(rootdir)
    # print('read density map done')
    v = op['v']

    # get packing info
    import packing_single_sphere.simulate as SI
    target_name = packing_op['target']
    packing_result = SI.packing_with_target(packing_op)
    protein_name = packing_result['optimal_result']['pdb_id']
    x = packing_result['optimal_result']['x'] / 10
    y = packing_result['optimal_result']['y'] / 10
    z = packing_result['optimal_result']['z'] / 10
    # print('initialization',packing_result['optimal_result']['initialization'])
    x0 = np.array(packing_result['optimal_result']['initialization'][0]) / 10
    y0 = np.array(packing_result['optimal_result']['initialization'][1]) / 10
    z0 = np.array(packing_result['optimal_result']['initialization'][2]) / 10
    box_size = packing_result['general_info']['box_size'] / 10
    print('get packing info done')

    # merge map to hugemap, save random angle in packing_result
    import map_tomo.merge_map as MM
    initmap, init_angle_list = MM.merge_map(v, protein_name, x0, y0, z0,
                                            box_size)
    packmap, pack_angle_list = MM.merge_map(v, protein_name, x, y, z, box_size)
    packing_result['optimal_result']['initmap_rotate_angle'] = init_angle_list
    packing_result['optimal_result']['packmap_rotate_angle'] = pack_angle_list
    print('merge huge map done ')
    # save packing info
    with open(output['json']['pack'], 'w') as f:
        json.dump(packing_result, f, cls=MM.NumpyEncoder)
    print('save packing info done')
    # convert packmap to tomogram

    if save_tomo != 0:
        # save init & pack map to mrc
        IM.map2mrc(initmap, output['initmap']['mrc'])
        IM.map2mrc(packmap, output['packmap']['mrc'])
        # save init & pack map to png
        IM.map2png(initmap, output['initmap']['png'])
        IM.map2png(packmap, output['packmap']['png'])
        #save  pack tomo to mrc and png
        IM.map2mrc(tomo, output['tomo']['mrc'])
        IM.map2png(tomo, output['tomo']['png'])

    # # trim hugemap: cut the volume without macromolecule
    # trim_initmap = MM.trim_margin(initmap)
    # trim_packmap = MM.trim_margin(packmap)
    # trim_tomo = MM.trim_margin(tomo)
    # print('initmap shape',initmap.shape)
    # print('trimmed shape',trim_initmap.shape)
    # print('packmap shape',packmap.shape)
    # print('trimmed shape',trim_packmap.shape)
    # print('tomo shape',tomo.shape)
    # print('trimmed shape',trim_tomo.shape)
    # IM.map2mrc(trim_initmap, output['initmap']['trim'])
    # IM.map2mrc(trim_packmap, output['packmap']['trim'])
    # IM.map2mrc(trim_tomo, output['tomo']['trim'])

    # trim target
    i = protein_name.index(target_name)
    target_packmap, loc_r = MM.trim_target(packmap,
                                           np.array([x[i], y[i],
                                                     z[i]]), op['target_size'])
    print('trim target done')

    # import map_tomo.map2tomogram as MT
    # target_tomo = MT.map2tomo(target_packmap, op['tomo'])
    # print('convert to tomo')

    if save_target != 0:
        IM.map2mrc(target_packmap, output['packmap']['target']['mrc'])
        # IM.map2mrc(target_tomo, output['tomo']['target']['mrc'])
        # IM.map2png(target_packmap, output['packmap']['target']['png'])
        # IM.map2png(target_tomo, output['tomo']['target']['png'])

    # save target info
    target_info = {}
    target_info['loc'] = loc_r
    target_info['rotate'] = pack_angle_list[i]
    target_info['name'] = packing_op['target']
    target_info['SNR'] = op['tomo']['model']['SNR']
    with open(output['json']['target'], 'w') as f:
        json.dump(target_info, f, cls=MM.NumpyEncoder)
    print('get target info done')

    if save_tomo_slice != 0:
        # convert packmap & tomo to separate pictures
        import map_tomo.mrc2singlepic as MS
        MS.mrc2singlepic(output['packmap']['mrc'],
                         output['packmap']['png'] + 'packmap{}/'.format(num),
                         'packmap{}'.format(num))
        MS.mrc2singlepic(output['tomo']['mrc'],
                         output['tomo']['png'] + 'tomo{}/'.format(num),
                         'tomo{}'.format(num))

    target_simu_tomo = {}
    # target_simu_tomo['tomo'] = target_tomo
    target_simu_tomo['density_map'] = target_packmap
    target_simu_tomo['info'] = target_info
    print('all done')

    endtime = datetime.datetime.now()
    print('simulation time:', (endtime - starttime).seconds, 'seconds')

    return target_simu_tomo
Example #4
0
import map_tomo.pdb2map as PM
import map_tomo.iomap as IM
ms = PM.pdb2map(op['map'])
for n in ms:
    v = ms[n]
    IM.map2mrc(v, 'IOfile/map_single/{}.mrc'.format(n))

# read density map from mrc
rootdir = '/ldap_shared/home/v_sinuo_liu/Simple-Packing/IOfile/map_single'
v = IM.readMrcMapDir(rootdir)

# get packing info
import packing_single_sphere.simulate as SI
target_name = '1bxn'
packing_result = SI.packing_with_target(target_protein=target_name,
                                        random_protein_number=4,
                                        PDB_ori_path=op['map']['pdb_dir'])
protein_name = packing_result['optimal_result']['pdb_id']
x = packing_result['optimal_result']['x'] / 10
y = packing_result['optimal_result']['y'] / 10
z = packing_result['optimal_result']['z'] / 10
print('initialization', packing_result['optimal_result']['initialization'])
x0 = np.array(packing_result['optimal_result']['initialization'][0]) / 10
y0 = np.array(packing_result['optimal_result']['initialization'][1]) / 10
z0 = np.array(packing_result['optimal_result']['initialization'][2]) / 10
box_size = packing_result['general_info']['box_size'] / 10

# merge map to hugemap, save random angle in packing_result
import map_tomo.merge_map as MM
initmap, init_angle_list = MM.merge_map(v, protein_name, x0, y0, z0, box_size)
packmap, pack_angle_list = MM.merge_map(v, protein_name, x, y, z, box_size)
Example #5
0
def simu_subtomo(op,
                 packing_op,
                 output,
                 save_tomo=0,
                 save_target=1,
                 save_tomo_slice=0):
    '''

    :param op: parameter of convert pdb/ density map to tomogram
    :param packing_op: parameter of packing process
    :param output: path of output file
    :param save_tomo: 1 save, 0 not save, if the large subtomogram.mrc of the whole packing scene(including 5-10 macromolecules) will be saved
    :param save_target:  1 save, 0 not save, if the subtomogram.mrc of the target will be saved
    :param save_tomo_slice:  1 save, 0 not save, if the sliced image will be saved.
    :return:

        target_simu_tomo = { 'tomo' : subtomogram of target macromolecule, .mrc file
                         'density_map': density map, .mrc file
                         'info': {  'loc' : coordinate of target macromolecule
                                    'rotate' : the rotation angle of this macromolecule (ZYZ, Euler angle)
                                    'name' : the name of a macromolecule
                                  }
                        }

        the json file of packing result and target will be saved in '../IOfile/json'
    '''

    # # convert pdb to map
    import map_tomo.pdb2map as PM
    import map_tomo.iomap as IM
    # ms = PM.pdb2map(op['map'])
    # for n in ms:
    #     v = ms[n]
    #     IM.map2mrc(v, op['map']['map_single_path']+ '/{}.mrc'.format(n))

    # # read density map from mrc
    # rootdir = op['map']['map_single_path']
    # v = IM.readMrcMapDir(rootdir)
    # print('read density map done')
    v = op['v']

    # get packing info
    import packing_single_sphere.simulate as SI
    target_name = packing_op['target']
    packing_result = SI.packing_with_target(packing_op)
    protein_name = packing_result['optimal_result']['pdb_id']

    # x = packing_result['optimal_result']['x']/10
    # y = packing_result['optimal_result']['y']/10
    # z = packing_result['optimal_result']['z']/10
    # print(x,y,z)

    # print('initialization',packing_result['optimal_result']['initialization'])
    # x0 = np.array(packing_result['optimal_result']['initialization'][0])/10
    # y0 = np.array(packing_result['optimal_result']['initialization'][1])/10
    # z0 = np.array(packing_result['optimal_result']['initialization'][2])/10

    values = [-1, 1]
    x0 = np.array(packing_result['optimal_result']['initialization'][0]) / 50
    y0 = np.array(packing_result['optimal_result']['initialization'][1]) / 50
    z0 = np.array(packing_result['optimal_result']['initialization'][2]) / 50
    x0 = 150 + random.choice(values) * x0
    y0 = 150 + random.choice(values) * y0
    z0 = 150 + random.choice(values) * z0

    x = np.array(x0)
    y = np.array(y0)
    z = np.array(z0)

    box_size = packing_result['general_info']['box_size'] / 10
    packing_result['general_info']['box_size'] = 3000
    box_size = 300
    # print('[x0,y0,z0]:',x0,y0,z0)
    print('box_size:', box_size)
    print('get packing info done')

    # merge map to hugemap, save random angle in packing_result
    import map_tomo.merge_map as MM
    initmap, init_angle_list = MM.merge_map(v, protein_name, x0, y0, z0,
                                            box_size)
    # packmap,pack_angle_list = MM.merge_map(v, protein_name, x, y, z, box_size)
    packmap, pack_angle_list = initmap, init_angle_list
    packing_result['optimal_result']['initmap_rotate_angle'] = init_angle_list
    packing_result['optimal_result']['packmap_rotate_angle'] = pack_angle_list
    print('merge huge map done ')
    # save packing info
    with open(output['json']['pack'], 'w') as f:
        json.dump(packing_result, f, cls=MM.NumpyEncoder)
    print('save packing info')
    # convert packmap to tomogram
    import map_tomo.map2tomogram as MT
    tomo = MT.map2tomo(packmap, op['tomo'])
    print('convert to tomo')

    if save_tomo != 0:
        # save init & pack map to mrc
        IM.map2mrc(initmap, output['initmap']['mrc'])
        IM.map2mrc(packmap, output['packmap']['mrc'])
        # save init & pack map to png
        IM.map2png(initmap, output['initmap']['png'])
        IM.map2png(packmap, output['packmap']['png'])
        #save  pack tomo to mrc and png
        IM.map2mrc(tomo, output['tomo']['mrc'])
        IM.map2png(tomo, output['tomo']['png'])

    # # trim hugemap
    # trim_initmap = MM.trim_margin(initmap)
    # trim_packmap = MM.trim_margin(packmap)
    # trim_tomo = MM.trim_margin(tomo)
    # print('initmap shape',initmap.shape)
    # print('trimmed shape',trim_initmap.shape)
    # print('packmap shape',packmap.shape)
    # print('trimmed shape',trim_packmap.shape)
    # print('tomo shape',tomo.shape)
    # print('trimmed shape',trim_tomo.shape)
    # IM.map2mrc(trim_initmap, output['initmap']['trim'])
    # IM.map2mrc(trim_packmap, output['packmap']['trim'])
    # IM.map2mrc(trim_tomo, output['tomo']['trim'])

    # trim target
    i = protein_name.index(target_name)
    print('i:', i)
    print('x:', x)
    print('x[i]:', x[i])
    target_packmap, loc_r = MM.trim_target(packmap,
                                           np.array([x[i], y[i],
                                                     z[i]]), op['target_size'])
    target_tomo, loc_r = MM.trim_target(tomo, np.array([x[i], y[i], z[i]]),
                                        op['target_size'], loc_r)
    if save_target != 0:
        IM.map2mrc(target_packmap, output['packmap']['target']['mrc'])
        IM.map2mrc(target_tomo, output['tomo']['target']['mrc'])
        IM.map2png(target_packmap, output['packmap']['target']['png'])
        IM.map2png(target_tomo, output['tomo']['target']['png'])
    print('trim target done')
    # save target info
    target_info = {}
    target_info['loc'] = loc_r
    target_info['rotate'] = pack_angle_list[i]
    target_info['name'] = packing_op['target']
    with open(output['json']['target'], 'w') as f:
        json.dump(target_info, f, cls=MM.NumpyEncoder)
    print('get target info done')

    if save_tomo_slice != 0:
        # convert packmap & tomo to separate pictures
        import map_tomo.mrc2singlepic as MS
        MS.mrc2singlepic(output['packmap']['mrc'],
                         output['packmap']['png'] + 'packmap{}/'.format(num),
                         'packmap{}'.format(num))
        MS.mrc2singlepic(output['tomo']['mrc'],
                         output['tomo']['png'] + 'tomo{}/'.format(num),
                         'tomo{}'.format(num))

    target_simu_tomo = {}
    target_simu_tomo['tomo'] = target_tomo
    target_simu_tomo['density_map'] = target_packmap
    target_simu_tomo['info'] = target_info
    print('all done')

    return target_simu_tomo