def __init__(self, scope_name, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None, origin_mode=False, init_size = None): super(DynamicGRU, self).__init__(scope_name) self.gru_unit = GRUUnit( self.full_name(), size * 3, param_attr=param_attr, bias_attr=bias_attr, activation=candidate_activation, gate_activation=gate_activation, origin_mode=origin_mode) self.size = size self.h_0 = h_0 self.is_reverse = is_reverse
def __init__(self, decoder_size, num_classes): super(GRUDecoderWithAttention, self).__init__() self.simple_attention = SimpleAttention(decoder_size) self.fc_1_layer = Linear( Config.encoder_size * 2, decoder_size * 3, bias_attr=False) self.fc_2_layer = Linear( decoder_size, decoder_size * 3, bias_attr=False) self.gru_unit = GRUUnit( size=decoder_size * 3, param_attr=None, bias_attr=None) self.out_layer = Linear( decoder_size, num_classes + 2, bias_attr=None, act='softmax') self.decoder_size = decoder_size
def __init__(self, scope_name, decoder_size, num_classes): super(GRUDecoderWithAttention, self).__init__(scope_name) self.simple_attention = SimpleAttention(self.full_name(), decoder_size) self.fc_1_layer = FC(self.full_name(), size=decoder_size * 3, bias_attr=False) self.fc_2_layer = FC(self.full_name(), size=decoder_size * 3, bias_attr=False) self.gru_unit = GRUUnit( self.full_name(), size=decoder_size * 3, param_attr=None, bias_attr=None) self.out_layer = FC(self.full_name(), size=num_classes + 2, bias_attr=None, act='softmax') self.decoder_size = decoder_size
def __init__(self, name_scope, size): super(DynamicGRU, self).__init__(name_scope) self.gru_unit = GRUUnit(self.full_name(), size * 3)