Example #1
0
    def test_mul(self):

        a = data(name='a', shape=[784], dtype='float32')
        b = data(
            name='b',
            shape=[784, 100],
            dtype='float32',
            append_batch_size=False)
        out = mul(x=a, y=b)

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)

            a_np = numpy.random.random((100, 784)).astype('float32')
            b_np = numpy.random.random((784, 100)).astype('float32')
            self.assertEqual(0, core.get_mem_usage(0))
            exe = Executor(place)
            outs = exe.run(feed={'a': a_np, 'b': b_np}, fetch_list=[out])
            out = outs[0]
            #disable this assert since ctest will ignore the os.environ setting 
            #self.assertGreater(core.get_mem_usage(0), 0)

            raised = False
            try:
                core.print_mem_usage()
            except:
                raised = True
            self.assertFalse(raised, 'Exception raised')
Example #2
0
    def test_grad(self):
        place = core.CPUPlace()
        program = Program()

        with program_guard(program):
            x = layers.data(name='x',
                            shape=[1],
                            dtype='float32',
                            stop_gradient=False)
            table = layers.lod_rank_table(x, level=0)
            array = layers.lod_tensor_to_array(x, table)
            result = layers.array_to_lod_tensor(array, table)

            mean = layers.mean(result)

            append_backward(mean)

        tensor = core.LoDTensor()
        tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)
        tensor.set_recursive_sequence_lengths([[3, 6, 1]])

        g_vars = program.global_block().var(x.name + "@GRAD")

        exe = Executor(place)
        g_out = [
            numpy.array(item).sum() for item in exe.run(program,
                                                        feed={'x': tensor},
                                                        fetch_list=[g_vars],
                                                        return_numpy=False)
        ]
        g_out_sum = numpy.array(g_out).sum()

        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
    def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0):
        place = self.place()
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10])
            x.persistable = True
            table = layers.lod_rank_table(x, level=level)
            max_len = layers.max_sequence_len(table)
            max_len.persistable = True
            array = layers.lod_tensor_to_array(x, table)
            array.persistable = True

            result = layers.array_to_lod_tensor(array, table)
            result.persistable = True
        exe = Executor(place)
        scope = core.Scope()
        exe.run(program, feed={'x': tensor}, scope=scope)
        var = scope.find_var(array.name)
        array = var.get_lod_tensor_array()
        if expect_array is not None and expect_lod is not None:
            self.check_array_same(array, expect_array, expect_lod)
        self.check_tensor_same(scope.find_var(result.name).get_tensor(), tensor)

        self.assertEqual(
            numpy.array(scope.find_var(max_len.name).get_tensor())[0],
            expect_max_len)
Example #4
0
    def not_test_raw_api(self):
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
            cond = layers.less_than(x=label, y=limit)
            true_image, false_image = split_lod_tensor(input=image, mask=cond)

            true_out = layers.create_tensor(dtype='float32')
            true_cond = ConditionalBlock([cond])

            with true_cond.block():
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=true_out)

            false_out = layers.create_tensor(dtype='float32')
            false_cond = ConditionalBlock([cond])

            with false_cond.block():
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=false_out)

            prob = merge_lod_tensor(
                in_true=true_out, in_false=false_out, mask=cond, x=image)
            loss = layers.cross_entropy(input=prob, label=label)
            avg_loss = layers.mean(loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=10)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(startup_prog)
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array([x[0] for x in data]).astype("float32")
                y_data = np.array([x[1] for x in data]).astype("int64")
                y_data = np.expand_dims(y_data, axis=1)

                outs = exe.run(prog,
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
                print(outs[0])
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
Example #5
0
    def _calc_output(self, place):
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
        return outs, fetch_list
    def test_forward(self):
        data = layers.data(name='X', shape=[1], dtype='float32')
        data.stop_gradient = False
        cond = layers.ConditionalBlock(inputs=[data])
        out = layers.create_tensor(dtype='float32')
        with cond.block():
            hidden = layers.fc(input=data, size=10)
            layers.assign(hidden, out)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        exe.run(default_startup_program())

        x = numpy.random.random(size=(10, 1)).astype('float32')

        outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
        print outs
        loss = layers.mean(out)
        append_backward(loss=loss)
        outs = exe.run(
            feed={'X': x},
            fetch_list=[
                default_main_program().block(0).var(data.name + "@GRAD")
            ])[0]
        print outs
Example #7
0
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
        prog = Program()
        block = prog.global_block()
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
        param_grad_list = append_backward(loss=loss,
                                          parameter_list=input_to_check,
                                          no_grad_set=no_grad_set)

        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)

        fetch_list = [g for p, g in param_grad_list]
        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
            executor = fluid.ParallelExecutor(use_cuda=use_cuda,
                                              loss_name=loss.name,
                                              main_program=prog)
        else:
            executor = Executor(place)
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))
Example #8
0
    def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0):
        place = self.place()
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10])
            x.persistable = True
            table = layers.lod_rank_table(x, level=level)
            max_len = layers.max_sequence_len(table)
            max_len.persistable = True
            array = layers.lod_tensor_to_array(x, table)
            array.persistable = True

            result = layers.array_to_lod_tensor(array, table)
            result.persistable = True
        exe = Executor(place)
        scope = core.Scope()
        exe.run(program, feed={'x': tensor}, scope=scope)
        var = scope.find_var(array.name)
        array = var.get_lod_tensor_array()
        if expect_array is not None and expect_lod is not None:
            self.check_array_same(array, expect_array, expect_lod)
        self.check_tensor_same(
            scope.find_var(result.name).get_tensor(), tensor)

        self.assertEqual(
            numpy.array(scope.find_var(max_len.name).get_tensor())[0],
            expect_max_len)
Example #9
0
 def test_forward(self):
     switch_main_program(Program())
     printed = self.build_network(True, print_phase='forward')
     exe = Executor(self.place)
     outs = exe.run(feed={'x': self.x_tensor},
                    fetch_list=[printed],
                    return_numpy=False)
    def test_grad(self):
        place = core.CPUPlace()
        program = Program()

        with program_guard(program):
            x = layers.data(
                name='x', shape=[1], dtype='float32', stop_gradient=False)
            table = layers.lod_rank_table(x, level=0)
            array = layers.lod_tensor_to_array(x, table)
            result = layers.array_to_lod_tensor(array, table)

            mean = layers.mean(result)

            append_backward(mean)

        tensor = core.LoDTensor()
        tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)
        tensor.set_lod([[0, 3, 9, 10]])

        g_vars = program.global_block().var(x.name + "@GRAD")

        exe = Executor(place)
        g_out = [
            numpy.array(item).sum()
            for item in exe.run(program,
                                feed={'x': tensor},
                                fetch_list=[g_vars],
                                return_numpy=False)
        ]
        g_out_sum = numpy.array(g_out).sum()

        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Example #11
0
 def test_backward(self):
     switch_main_program(Program())
     loss = self.build_network(False, print_phase='backward')
     exe = Executor(self.place)
     outs = exe.run(feed={'x': self.x_tensor},
                    fetch_list=[loss],
                    return_numpy=False)
Example #12
0
    def test_mul(self):
        i = zeros(shape=[1], dtype='int64')
        a = data(name='a', shape=[784], dtype='float32')
        array = array_write(x=a, i=i)

        i = increment(i)
        b = data(
            name='b',
            shape=[784, 100],
            dtype='float32',
            append_batch_size=False)
        array_write(x=b, i=i, array=array)

        i = increment(i)
        out = mul(x=a, y=b)
        array_write(x=out, i=i, array=array)

        a_np = numpy.random.random((100, 784)).astype('float32')
        b_np = numpy.random.random((784, 100)).astype('float32')

        exe = Executor()
        res, res_array = exe.run(feed={'a': a_np,
                                       'b': b_np},
                                 fetch_list=[out, array])

        self.assertEqual((100, 100), res.shape)
        self.assertTrue(numpy.allclose(res, numpy.dot(a_np, b_np)))
        self.assertTrue(numpy.allclose(res_array[0], a_np))
        self.assertTrue(numpy.allclose(res_array[1], b_np))
        self.assertTrue(numpy.allclose(res_array[2], res))
Example #13
0
 def test_forward(self):
     switch_main_program(Program())
     printed = self.build_network(True, print_phase='forward')
     exe = Executor(self.place)
     outs = exe.run(feed={'x': self.x_tensor},
                    fetch_list=[printed],
                    return_numpy=False)
Example #14
0
        def closure(**kwargs):
            role = kwargs['role']

            pfl_mpc.init("aby3", role, "localhost", self.server,
                         int(self.port))

            #init_op = fluid.default_main_program().global_block().ops[0]

            #_insert_init_op(program, init_op)

            executor = Executor(place)

            executor.run()
            outs = executor.run(prog,
                                feed=feed_dict,
                                fetch_list=fetch_list,
                                return_numpy=False)
            # append lod information in last position
            lod = []
            for idx in range(len(fetch_list)):
                return_results[idx].append(np.array(outs[idx]))
                lod_i = outs[idx].lod()
                lod_concat = []
                for i in lod_i:
                    lod_concat.append(i)
                lod.append(lod_concat)
            return_results[len(fetch_list)].append(lod)
Example #15
0
def load():
    """ load model for predict """
    config = model_config()
    config.vocab_size = len(open(config.vocab_path).readlines())
    final_score, final_ids, final_index = knowledge_seq2seq(config)

    final_score.persistable = True
    final_ids.persistable = True
    final_index.persistable = True

    main_program = fluid.default_main_program()

    if config.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    fluid.io.load_params(executor=exe, dirname=config.model_path, main_program=main_program)

    processors = KnowledgeCorpus(
        data_dir=config.data_dir,
        data_prefix=config.data_prefix,
        vocab_path=config.vocab_path,
        min_len=config.min_len,
        max_len=config.max_len)

    # load dict
    id_dict_array = load_id2str_dict(config.vocab_path)

    model_handle = [exe, place, final_score, final_ids, final_index, processors, id_dict_array]
    return model_handle
Example #16
0
    def setUp(self):
        np.random.seed(123)
        self.model_hparams = {
            "num_layers": 2,
            "hidden_size": 128,
            "dropout_prob": 0.1,
            "src_vocab_size": 100,
            "trg_vocab_size": 100
        }

        self.iter_num = iter_num = 2
        self.batch_size = batch_size = 4
        src_seq_len = 10
        trg_seq_len = 12
        self.data = {
            "src": np.random.randint(
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, src_seq_len)).astype("int64"),
            "src_sequence_length": np.random.randint(
                1, src_seq_len, (iter_num * batch_size, )).astype("int64"),
            "trg": np.random.randint(
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len)).astype("int64"),
            "trg_sequence_length": np.random.randint(
                1, trg_seq_len, (iter_num * batch_size, )).astype("int64"),
            "label": np.random.randint(
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
        }

        place = core.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else core.CPUPlace()
        self.exe = Executor(place)
    def test_forward_backward_single_tensor_output(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            x.stop_gradient = False  # For test gradient
            mask = layers.data(name='mask', shape=[1], dtype='int32')

            out = program.current_block().create_var(
                dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)

            select_output(x, out, mask)
            y = select_input(out, mask)
            mean = layers.mean(y)
            append_backward(mean)

        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
        exe = Executor(place)

        feed_x = np.asarray([1.3, -1.4]).astype(np.float32)
        feed_mask = np.asarray([0]).astype(np.int32)
        ret = exe.run(program,
                      feed={
                          'x': feed_x,
                          'mask': feed_mask
                      },
                      fetch_list=[y.name, x.grad_name])
        x_grad = np.asarray([0.5, 0.5]).astype(np.float32)
        self.assertTrue(np.allclose(np.asarray(ret[0]), feed_x))
        self.assertTrue(np.allclose(np.asarray(ret[1]), x_grad))
Example #18
0
    def test_select(self):
        with framework.program_guard(framework.Program()):
            ch1 = fluid.make_channel(
                dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1)

            result1 = self._create_tensor('return_value',
                                          core.VarDesc.VarType.LOD_TENSOR,
                                          core.VarDesc.VarType.FP64)

            input_value = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.FP64, value=10)

            with fluid.Select() as select:
                with select.case(fluid.channel_send, ch1, input_value):
                    # Execute something.
                    pass

                with select.default():
                    pass

            # This should not block because we are using a buffered channel.
            result1, status = fluid.channel_recv(ch1, result1)
            fluid.channel_close(ch1)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            result = exe.run(fetch_list=[result1])
            self.assertEqual(result[0][0], 10)
Example #19
0
    def check_switch(self, value):
        x = layers.fill_constant(shape=[1], dtype='float32', value=value)
        zero_var = layers.fill_constant(shape=[1], dtype='float32', value=0.0)
        one_var = layers.fill_constant(shape=[1], dtype='float32', value=1.0)
        two_var = layers.fill_constant(shape=[1], dtype='float32', value=2.0)
        three_var = layers.fill_constant(shape=[1], dtype='float32', value=3.0)

        result = layers.create_global_var(shape=[1],
                                          value=-1.0,
                                          dtype='float32',
                                          persistable=True)

        with layers.Switch() as switch:
            with switch.case(layers.less_than(x, zero_var)):
                layers.assign(zero_var, result)
            with switch.case(layers.less_than(x, one_var)):
                layers.assign(one_var, result)
            with switch.case(layers.less_than(x, two_var)):
                layers.assign(two_var, result)
            with switch.default():
                layers.assign(three_var, result)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        exe.run(default_startup_program())

        out = exe.run(feed={}, fetch_list=[result])[0][0]
        return out
Example #20
0
    def check_switch(self, value):
        x = layers.fill_constant(shape=[1], dtype='float32', value=value)

        zero_var = layers.fill_constant(shape=[1], dtype='float32', value=0.0)
        one_var = layers.fill_constant(shape=[1], dtype='float32', value=1.0)
        two_var = layers.fill_constant(shape=[1], dtype='float32', value=2.0)
        three_var = layers.fill_constant(shape=[1], dtype='float32', value=3.0)

        result = layers.create_global_var(
            shape=[1], value=-1.0, dtype='float32', persistable=True)

        with layers.Switch() as switch:
            with switch.case(layers.less_than(x, zero_var)):
                layers.assign(zero_var, result)
            with switch.case(layers.less_than(x, one_var)):
                layers.assign(one_var, result)
            with switch.case(layers.less_than(x, two_var)):
                layers.assign(two_var, result)
            with switch.default():
                layers.assign(three_var, result)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        exe.run(default_startup_program())

        out = exe.run(feed={}, fetch_list=[result])[0][0]
        return out
Example #21
0
    def test_square_error_cost(self):
        input_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")
        label_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")

        sub = input_val - label_val
        np_result = sub * sub

        input_var = layers.create_tensor(dtype="float32", name="input")
        label_var = layers.create_tensor(dtype="float32", name="label")

        layers.assign(input=input_val, output=input_var)
        layers.assign(input=label_val, output=label_var)
        output = layers.square_error_cost(input=input_var, label=label_var)

        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = Executor(place)
            result = exe.run(fluid.default_main_program(),
                             feed={
                                 "input": input_var,
                                 "label": label_var
                             },
                             fetch_list=[output])

            self.assertTrue(np.isclose(np_result, result).all())
Example #22
0
 def test_backward(self):
     switch_main_program(Program())
     loss = self.build_network(False, print_phase='backward')
     exe = Executor(self.place)
     outs = exe.run(feed={'x': self.x_tensor},
                    fetch_list=[loss],
                    return_numpy=False)
Example #23
0
        def closure(**kwargs):
            role = kwargs['role']

            pfl_mpc.init("aby3", role, "localhost", self.server,
                         int(self.port))
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(loss=loss,
                                              parameter_list=input_to_check,
                                              no_grad_set=no_grad_set)

            inputs = self._get_inputs(block)
            feed_dict = self.feed_var(inputs, place)

            fetch_list = [g for p, g in param_grad_list]

            executor = Executor(place)

            executor.run()
            outs = executor.run(prog,
                                feed=feed_dict,
                                fetch_list=fetch_list,
                                return_numpy=False)
            # append lod information in last position
            lod = []
            for idx in range(fetch_list_len):
                return_results[idx].append(np.array(outs[idx]))
                lod_i = outs[idx].lod()
                lod_concat = []
                for i in lod_i:
                    lod_concat.append(i)
                lod.append(lod_concat)
            return_results[fetch_list_len].append(lod)
Example #24
0
    def _calc_output(self, place):
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
        return outs, fetch_list
Example #25
0
    def run(self, input, output, attrs):
        program = Program()
        block = program.global_block()
        op_proto = self.op_proto
        inputs = self.__append_input_output(block, op_proto, input, True)
        outputs = self.__append_input_output(block, op_proto, output, False)
        op = block.append_op(type=self.op_name,
                             inputs=inputs,
                             outputs=outputs,
                             attrs=attrs)
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)
        feed_map = self.__feed_var(inputs, input)

        exe = Executor(self.place)
        result = exe.run(program,
                         feed=feed_map,
                         fetch_list=fetch_list,
                         return_numpy=False)

        atcual_dic = {}
        for i, obj in enumerate(fetch_list):
            atcual_dic[obj.name] = np.array(result[i])
        return atcual_dic
Example #26
0
def train(config):
    """ model training """
    config.vocab_size = len(open(config.vocab_path).readlines())
    bow_loss, kl_loss, nll_loss, final_loss= knowledge_seq2seq(config)

    bow_loss.persistable = True
    kl_loss.persistable = True
    nll_loss.persistable = True
    final_loss.persistable = True
    
    main_program = fluid.default_main_program()
    inference_program = fluid.default_main_program().clone(for_test=True)

    fluid.clip.set_gradient_clip(
        clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=config.grad_clip))
    optimizer = fluid.optimizer.Adam(learning_rate=config.lr)

    if config.stage == 0:
        print("stage 0")
        optimizer.minimize(bow_loss)
    else:
        print("stage 1")
        optimizer.minimize(final_loss)

    opt_var_name_list = optimizer.get_opti_var_name_list()

    if config.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    param_list = main_program.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    init_model(config, param_name_list, place)

    processors = KnowledgeCorpus(
                        data_dir=config.data_dir,
                        data_prefix=config.data_prefix,
                        vocab_path=config.vocab_path,
                        min_len=config.min_len,
                        max_len=config.max_len)
    train_generator = processors.data_generator(
                        batch_size=config.batch_size,
                        phase="train",
                        shuffle=True)
    valid_generator = processors.data_generator(
                        batch_size=config.batch_size,
                        phase="dev",
                        shuffle=False)

    model_handle = [exe, place, bow_loss, kl_loss, nll_loss, final_loss]

    train_loop(config,
               train_generator, valid_generator,
               main_program, inference_program,
               model_handle, param_name_list, opt_var_name_list)
Example #27
0
    def test_select(self):
        with framework.program_guard(framework.Program()):
            ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR,
                                     capacity=1)

            result1 = self._create_tensor('return_value',
                                          core.VarDesc.VarType.LOD_TENSOR,
                                          core.VarDesc.VarType.FP64)

            input_value = fill_constant(shape=[1],
                                        dtype=core.VarDesc.VarType.FP64,
                                        value=10)

            with fluid.Select() as select:
                with select.case(fluid.channel_send, ch1, input_value):
                    # Execute something.
                    pass

                with select.default():
                    pass

            # This should not block because we are using a buffered channel.
            result1, status = fluid.channel_recv(ch1, result1)
            fluid.channel_close(ch1)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            result = exe.run(fetch_list=[result1])
            self.assertEqual(result[0][0], 10)
    def test_ifelse(self):
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant_batch_size_like(input=label,
                                                         dtype='int64',
                                                         shape=[1],
                                                         value=5.0)
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
            avg_loss = layers.mean(loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
                                    batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape((y_data.shape[0], 1))

                outs = exe.run(kwargs['main_program'],
                               feed={
                                   'x': x_data,
                                   'y': y_data
                               },
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
 def test_array_length(self):
     tmp = layers.zeros(shape=[10], dtype='int32')
     i = layers.fill_constant(shape=[1], dtype='int64', value=10)
     arr = layers.array_write(tmp, i=i)
     arr_len = layers.array_length(arr)
     cpu = core.CPUPlace()
     exe = Executor(cpu)
     result = exe.run(fetch_list=[arr_len])[0]
     self.assertEqual(11, result[0])
Example #30
0
 def test_array_length(self):
     tmp = layers.zeros(shape=[10], dtype='int32')
     i = layers.fill_constant(shape=[1], dtype='int64', value=10)
     arr = layers.array_write(tmp, i=i)
     arr_len = layers.array_length(arr)
     cpu = core.CPUPlace()
     exe = Executor(cpu)
     result = exe.run(fetch_list=[arr_len])[0]
     self.assertEqual(11, result[0])
 def test_forward(self):
     x_np = np.random.normal(size=(2, 3)).astype("float32")
     self.feed_map = {'X': x_np}
     self.fetch_list = [self.Out]
     exe = Executor(self.place)
     out = exe.run(self.program,
                   feed=self.feed_map,
                   fetch_list=self.fetch_list)
     self.assertTrue(np.allclose(out[0], x_np, rtol=1e-5))
Example #32
0
    def test_grad(self):
        place = core.CPUPlace()
        program = Program()
        with program_guard(program):
            x = layers.data(name='x',
                            shape=[1],
                            dtype='float32',
                            stop_gradient=False)
            y = layers.data(name='y',
                            shape=[1],
                            dtype='bool',
                            stop_gradient=False)

            level = 0

            out_true, out_false = split_lod_tensor(input=x,
                                                   mask=y,
                                                   level=level)
            out = merge_lod_tensor(in_true=out_true,
                                   in_false=out_false,
                                   mask=y,
                                   x=x,
                                   level=level)
            mean = layers.mean(out)

            append_backward(mean)

        tensor = core.LoDTensor()
        tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place)
        tensor.set_recursive_sequence_lengths([[3, 6, 1]])

        mask_np = np.array([0, 1, 0]).astype('bool')
        mask_np = np.expand_dims(mask_np, axis=1)

        mask = core.LoDTensor()
        mask.set(mask_np, place)

        exe = Executor(place)
        scope = core.Scope()

        g_vars = program.global_block().var(x.name + "@GRAD")
        g_out = [
            item.sum() for item in map(
                np.array,
                exe.run(program,
                        feed={
                            'x': tensor,
                            'y': mask
                        },
                        fetch_list=[g_vars],
                        scope=scope,
                        return_numpy=False))
        ]

        g_out_sum = np.array(g_out).sum()

        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Example #33
0
 def forward(self):
     self.feed_map = {
         x: create_tensor(getattr(self.py_argsort, x), self.place)
         for x in self.feed_data_field
     }
     exe = Executor(self.place)
     out = exe.run(self.main_program,
                   feed=self.feed_map,
                   fetch_list=[self.index, self.sorted_x, self.loss])
     return out
    def test_run(self):
        inputs = fluid.data(name='inputs',
                            shape=[None, self.input_size],
                            dtype='float32')
        pre_hidden = fluid.data(name='pre_hidden',
                                shape=[None, self.hidden_size],
                                dtype='float32')
        pre_cell = fluid.data(name='pre_cell',
                              shape=[None, self.hidden_size],
                              dtype='float32')

        cell = LSTMCell(self.hidden_size)
        lstm_hidden_new, lstm_states_new = cell(inputs, [pre_hidden, pre_cell])

        lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
            "basicLSTM", self.hidden_size, None, None, None, None, 1.0,
            "float32")
        lstm_hidden, lstm_cell = lstm_unit(inputs, pre_hidden, pre_cell)

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = Executor(place)
        exe.run(framework.default_startup_program())

        inputs_np = np.random.uniform(
            -0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
        pre_hidden_np = np.random.uniform(
            -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
        pre_cell_np = np.random.uniform(
            -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')

        param_names = [[
            "LSTMCell/BasicLSTMUnit_0.w_0", "basicLSTM/BasicLSTMUnit_0.w_0"
        ], ["LSTMCell/BasicLSTMUnit_0.b_0", "basicLSTM/BasicLSTMUnit_0.b_0"]]

        for names in param_names:
            param = np.array(fluid.global_scope().find_var(
                names[0]).get_tensor())
            param = np.random.uniform(-0.1, 0.1,
                                      size=param.shape).astype('float32')
            fluid.global_scope().find_var(names[0]).get_tensor().set(
                param, place)
            fluid.global_scope().find_var(names[1]).get_tensor().set(
                param, place)

        out = exe.run(feed={
            'inputs': inputs_np,
            'pre_hidden': pre_hidden_np,
            'pre_cell': pre_cell_np
        },
                      fetch_list=[lstm_hidden_new, lstm_hidden])

        self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
Example #35
0
    def test_ifelse(self):
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant_batch_size_like(
                input=label, dtype='int64', shape=[1], value=5.0)
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
            avg_loss = layers.mean(loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape((y_data.shape[0], 1))

                outs = exe.run(kwargs['main_program'],
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
Example #36
0
def infer():
    args = parse_args()

    num_layers = args.num_layers
    src_vocab_size = args.vocab_size
    tar_vocab_size = args.vocab_size
    batch_size = args.batch_size
    init_scale = args.init_scale
    max_grad_norm = args.max_grad_norm
    hidden_size = args.hidden_size
    attr_init = args.attr_init
    latent_size = 32

    if args.enable_ce:
        fluid.default_main_program().random_seed = 102
        framework.default_startup_program().random_seed = 102

    model = VAE(hidden_size,
                latent_size,
                src_vocab_size,
                tar_vocab_size,
                batch_size,
                num_layers=num_layers,
                init_scale=init_scale,
                attr_init=attr_init)

    beam_size = args.beam_size
    trans_res = model.build_graph(mode='sampling', beam_size=beam_size)
    # clone from default main program and use it as the validation program
    main_program = fluid.default_main_program()

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = Executor(place)
    exe.run(framework.default_startup_program())

    dir_name = args.reload_model
    print("dir name", dir_name)
    dir_name = os.path.join(dir_name, "checkpoint")
    fluid.load(main_program, dir_name, exe)
    vocab, tar_id2vocab = get_vocab(args.dataset_prefix)
    infer_output = np.ones((batch_size, 1), dtype='int64') * BOS_ID

    fetch_outs = exe.run(feed={'tar': infer_output},
                         fetch_list=[trans_res.name],
                         use_program_cache=False)

    with io.open(args.infer_output_file, 'w', encoding='utf-8') as out_file:

        for line in fetch_outs[0]:
            end_id = -1
            if EOS_ID in line:
                end_id = np.where(line == EOS_ID)[0][0]
            new_line = [tar_id2vocab[e[0]] for e in line[1:end_id]]
            out_file.write(space_tok.join(new_line))
            out_file.write(line_tok)
Example #37
0
    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
        out = exe.run(self.main_program,
                      feed=self.feed_map,
                      fetch_list=[self.output])

        return out[0]
def main():
    rnn_out = encoder_decoder()
    label = layers.data(name="target_language_next_word",
                        shape=[1],
                        dtype='int64',
                        lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = fluid.layers.mean(cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    # fluid.memory_optimize(fluid.default_main_program())
    fluid.release_memory(fluid.default_main_program())

    # fix the order of training data
    train_data = paddle.batch(paddle.dataset.wmt14.train(dict_size),
                              batch_size=batch_size)

    # train_data = paddle.batch(
    #     paddle.reader.shuffle(
    #         paddle.dataset.wmt14.train(dict_size), buf_size=1000),
    #     batch_size=batch_size)

    place = core.CPUPlace()
    exe = Executor(place)

    exe.run(framework.default_startup_program())

    feed_order = [
        'src_word_id', 'target_language_word', 'target_language_next_word'
    ]

    feed_list = [
        fluid.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    batch_id = 0
    for pass_id in xrange(10):
        for data in train_data():
            outs = exe.run(fluid.default_main_program(),
                           feed=feeder.feed(data),
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 2:
                exit(0)
            if math.isnan(float(avg_cost_val)):
                sys.exit("got NaN loss, training failed.")
            batch_id += 1
    def test_backward(self):
        self.feed_map = {
            name: np.random.normal(size=(2, 3)).astype("float32")
            for name in self.input_names
        }
        self.fetch_list = [self.output_vars['X@GRAD']]

        exe = Executor(self.place)
        out = exe.run(self.program,
                      feed=self.feed_map,
                      fetch_list=self.fetch_list)
        np.isclose(out[0], self.feed_map['Out@GRAD'], rtol=1e-5)
Example #40
0
    def test_simple_forward(self):
        d0 = layers.data(
            "d0", shape=[10], append_batch_size=False, dtype='float32')
        d1 = layers.data(
            "d1", shape=[10], append_batch_size=False, dtype='float32')
        d2 = layers.data(
            "d2", shape=[10], append_batch_size=False, dtype='float32')
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
        mem_array = layers.array_write(x=init, i=i)
        data_array = layers.array_write(x=d0, i=i)

        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)

        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True

        array_len = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len.stop_gradient = True
        cond = layers.less_than(x=i, y=array_len)

        while_op = layers.While(cond=cond)
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])

            i = layers.increment(x=i, in_place=True)
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)

        sum_result = layers.array_read(array=mem_array, i=i)
        loss = layers.mean(sum_result)

        append_backward(loss)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        d = []

        for i in xrange(3):
            d.append(numpy.random.random(size=[10]).astype('float32'))

        outs = exe.run(feed={'d0': d[0],
                             'd1': d[1],
                             'd2': d[2]},
                       fetch_list=[sum_result])
        self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Example #41
0
    def prepare_program(self, config, parallel=True):
        self.main_program = fluid.Program()
        self.startup_program = fluid.Program()
        self.startup_program.random_seed = config.random_seed
        with fluid.program_guard(self.main_program, self.startup_program):
            with fluid.unique_name.guard():
                res_vars = lm_model(
                    config.hidden_size,
                    config.vocab_size,
                    config.batch_size,
                    num_layers=config.num_layers,
                    num_steps=config.num_steps,
                    init_scale=config.init_scale,
                    dropout=config.dropout,
                    rnn_model=config.rnn_model,
                    use_py_reader=False)
                self.loss, self.last_hidden, self.last_cell, self.feed_order = res_vars

                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByGlobalNorm(
                        clip_norm=config.max_grad_norm))

                self.learning_rate = fluid.layers.create_global_var(
                    name="learning_rate",
                    shape=[1],
                    value=1.0,
                    dtype='float32',
                    persistable=True)

                optimizer = fluid.optimizer.SGD(
                    learning_rate=self.learning_rate)
                optimizer.minimize(self.loss)
        self.exe = Executor(fluid.CPUPlace())
        self.exe.run(self.startup_program)

        if parallel:
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_threads = self.device_count
            exec_strategy.num_iteration_per_drop_scope = 100

            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = False
            build_strategy.fuse_all_optimizer_ops = True

            self.train_program = fluid.compiler.CompiledProgram(
                self.main_program).with_data_parallel(
                    loss_name=self.loss.name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)
        else:
            self.train_program = self.main_program
Example #42
0
    def test_simple_routine(self):
        ch = fluid.make_channel(
            dtype=core.VarDesc.VarType.BOOL, name="CreateChannel")
        with fluid.Go():
            fluid.channel_send(ch, True)

        result = fluid.channel_recv(ch)
        fluid.channel_close(ch)

        cpu = core.CPUPlace()
        exe = Executor(cpu)

        outs = exe.run(fetch_list=[result])
        self.assertEqual(outs[0], True)
Example #43
0
    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
            self.main_program.global_block().var(grad_var_name(x))
            for x in self.data_field
        ]

        exe = Executor(self.place)
        return exe.run(self.main_program,
                       feed=self.feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Example #44
0
    def test_lod_rank_table(self):
        x = data(name='x', shape=[100])
        cpu = core.CPUPlace()
        rank_table = lod_rank_table(x=x, level=1)
        rank_table.persistable = True
        exe = Executor(cpu)
        scope = core.Scope()

        tensor = core.LoDTensor()
        tensor.set(numpy.random.random(size=(17, 100)), cpu)
        tensor.set_lod([[0, 1, 3], [0, 5, 6, 7], [0, 3, 4, 9, 10, 13, 16, 17]])
        exe.run(scope=scope, feed={'x': tensor})
        var = scope.find_var(rank_table.name)
        table = var.get_lod_rank_table()
        self.assertEqual([(0, 5), (1, 1), (2, 1)], table.items())
def main():
    rnn_out = encoder_decoder()
    label = layers.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = fluid.layers.mean(cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    # fluid.memory_optimize(fluid.default_main_program())
    fluid.release_memory(fluid.default_main_program())

    # fix the order of training data
    train_data = paddle.batch(
        paddle.dataset.wmt14.train(dict_size), batch_size=batch_size)

    # train_data = paddle.batch(
    #     paddle.reader.shuffle(
    #         paddle.dataset.wmt14.train(dict_size), buf_size=1000),
    #     batch_size=batch_size)

    place = core.CPUPlace()
    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
    for pass_id in xrange(10):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
            outs = exe.run(fluid.default_main_program(),
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 2:
                exit(0)
            if math.isnan(float(avg_cost_val)):
                sys.exit("got NaN loss, training failed.")
            batch_id += 1
Example #46
0
 def test_mul(self):
     a = data(name='a', shape=[784], dtype='float32')
     b = data(
         name='b',
         shape=[784, 100],
         dtype='float32',
         append_batch_size=False)
     out = mul(x=a, y=b)
     place = core.CPUPlace()
     a_np = numpy.random.random((100, 784)).astype('float32')
     b_np = numpy.random.random((784, 100)).astype('float32')
     exe = Executor(place)
     outs = exe.run(feed={'a': a_np, 'b': b_np}, fetch_list=[out])
     out = outs[0]
     self.assertEqual((100, 100), out.shape)
     self.assertTrue(numpy.allclose(out, numpy.dot(a_np, b_np)))
def decode_main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    translation_ids, translation_scores = decode(context, is_sparse)

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [1] * batch_size
    init_lod = [init_lod, init_lod]

    init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
    init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

    feed_order = ['src_word_id']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    for data in train_data():
        feed_dict = feeder.feed(map(lambda x: [x[0]], data))
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
            feed=feed_dict,
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
        print result_ids.lod()
        break
Example #48
0
 def test_param(self):
     shape = [784, 100]
     val = 1.0625
     b = main_program.global_block()
     param = b.create_parameter(
         name='fc.w',
         shape=shape,
         dtype='float32',
         initializer=ConstantInitializer(val))
     self.assertIsNotNone(param)
     self.assertEqual('fc.w', param.name)
     self.assertEqual((784, 100), param.shape)
     self.assertEqual(core.VarDesc.VarType.FP32, param.dtype)
     self.assertEqual(0, param.block.idx)
     exe = Executor(core.CPUPlace())
     p = exe.run(main_program, fetch_list=[param])[0]
     self.assertTrue(np.allclose(p, np.ones(shape) * val))
     p = io.get_parameter_value_by_name('fc.w', exe, main_program)
     self.assertTrue(np.allclose(np.array(p), np.ones(shape) * val))
def train(use_cuda, save_dirname=None):
    [avg_cost, prediction] = seq_to_seq_net()

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = Executor(place)
    exe.run(framework.default_startup_program())

    feed_order = ['source_sequence', 'target_sequence', 'label_sequence']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    batch_id = 0
    for pass_id in xrange(2):
        for data in train_data():
            outs = exe.run(framework.default_main_program(),
                           feed=feeder.feed(data),
                           fetch_list=[avg_cost])

            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if math.isnan(float(avg_cost_val[0])):
                sys.exit("got NaN loss, training failed.")
            if batch_id > 3:
                if save_dirname is not None:
                    fluid.io.save_inference_model(
                        save_dirname, ['source_sequence',
                                       'target_sequence'], [prediction], exe)
                return

            batch_id += 1
Example #50
0
    def test_ping_pong(self):
        """
        Mimics Ping Pong example: https://gobyexample.com/channel-directions
        """
        with framework.program_guard(framework.Program()):
            result = self._create_tensor('return_value',
                                         core.VarDesc.VarType.LOD_TENSOR,
                                         core.VarDesc.VarType.FP64)

            ping_result = self._create_tensor('ping_return_value',
                                              core.VarDesc.VarType.LOD_TENSOR,
                                              core.VarDesc.VarType.FP64)

            def ping(ch, message):
                fluid.channel_send(ch, message, is_copy=True)

            def pong(ch1, ch2):
                fluid.channel_recv(ch1, ping_result)
                fluid.channel_send(ch2, ping_result, is_copy=True)

            pings = fluid.make_channel(
                dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1)
            pongs = fluid.make_channel(
                dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1)

            msg = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.FP64, value=9)

            ping(pings, msg)
            pong(pings, pongs)

            fluid.channel_recv(pongs, result)

            fluid.channel_close(pings)
            fluid.channel_close(pongs)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            exe_result = exe.run(fetch_list=[result])
            self.assertEqual(exe_result[0][0], 9)
    def gaussian_random_test(self, place):

        program = fluid.Program()
        block = program.global_block()
        vout = block.create_var(name="Out")
        op = block.append_op(
            type=self.op_type, outputs={"Out": vout}, attrs=self.attrs)

        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        fetch_list = []
        for var_name in self.outputs:
            fetch_list.append(block.var(var_name))

        exe = Executor(place)
        outs = exe.run(program, fetch_list=fetch_list)
        tensor = outs[0]

        self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
        self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1)
    def test_no_lod(self):
        cpu = core.CPUPlace()
        x_tensor = core.LoDTensor()
        tensor_np = np.random.random(size=(3, 100)).astype('float32')
        x_tensor.set(tensor_np, cpu)

        rank_table_tensor = core.LoDTensor()
        rank_table_tensor.set_lod([[0, 1, 3, 6]])
        rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'),
                              cpu)

        exe = Executor(cpu)
        outs = exe.run(
            feed={'x': x_tensor,
                  'rank_table_tensor': rank_table_tensor},
            fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad],
            return_numpy=False)
        self.assertTrue(np.allclose(tensor_np[0:3], outs[0]))
        self.assertTrue(np.allclose(tensor_np[0:2], outs[1]))
        self.assertTrue(np.allclose(tensor_np[0:1], outs[2]))
        self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01)
Example #53
0
    def test_daisy_chain(self):
        '''
        Mimics classic Daisy-chain test:  https://talks.golang.org/2012/concurrency.slide#39
        '''
        n = 100

        leftmost = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
        left = leftmost

        # TODO(thuan): Use fluid.While() after scope capture is implemented.
        # https://github.com/PaddlePaddle/Paddle/issues/8502
        for i in range(n):
            right = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
            with fluid.Go():
                one_tensor = self._create_one_dim_tensor(1)
                result = self._create_tensor('return_value',
                                             core.VarDesc.VarType.LOD_TENSOR,
                                             core.VarDesc.VarType.INT64)

                result, status = fluid.channel_recv(right, result)
                one_added = fluid.layers.elementwise_add(x=one_tensor, y=result)
                fluid.channel_send(left, one_added)
            left = right

        # Trigger the channel propagation by sending a "1" to rightmost channel
        with fluid.Go():
            one_tensor = self._create_one_dim_tensor(1)
            fluid.channel_send(right, one_tensor)

        leftmost_result = self._create_tensor('return_value',
                                              core.VarDesc.VarType.LOD_TENSOR,
                                              core.VarDesc.VarType.INT64)
        leftmost_result, status = fluid.channel_recv(leftmost, leftmost_result)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        leftmost_data = exe.run(fetch_list=[leftmost_result])

        # The leftmost_data should be equal to the number of channels + 1
        self.assertEqual(leftmost_data[0][0], n + 1)
Example #54
0
    def test_simple_routine(self):
        ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)

        # Create LOD_TENSOR<INT64> and put it into the scope.  This placeholder
        # variable will be filled in and returned by fluid.channel_recv
        result = self._create_tensor('return_value',
                                     core.VarDesc.VarType.LOD_TENSOR,
                                     core.VarDesc.VarType.INT64)

        with fluid.Go():
            input_value = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.FP64, value=1234)
            fluid.channel_send(ch, input_value)

        result, status = fluid.channel_recv(ch, result)
        fluid.channel_close(ch)

        cpu = core.CPUPlace()
        exe = Executor(cpu)

        outs = exe.run(fetch_list=[result])
        self.assertEqual(outs[0], 1234)
    def test_read_write(self):
        x = [
            layers.data(
                name='x0', shape=[100]), layers.data(
                    name='x1', shape=[100]), layers.data(
                        name='x2', shape=[100])
        ]

        for each_x in x:
            each_x.stop_gradient = False

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = False
        arr = layers.array_write(x=x[0], i=i)
        i = layers.increment(x=i)
        arr = layers.array_write(x=x[1], i=i, array=arr)
        i = layers.increment(x=i)
        arr = layers.array_write(x=x[2], i=i, array=arr)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = False
        a0 = layers.array_read(array=arr, i=i)
        i = layers.increment(x=i)
        a1 = layers.array_read(array=arr, i=i)
        i = layers.increment(x=i)
        a2 = layers.array_read(array=arr, i=i)

        mean_a0 = layers.mean(a0)
        mean_a1 = layers.mean(a1)
        mean_a2 = layers.mean(a2)

        a_sum = layers.sums(input=[mean_a0, mean_a1, mean_a2])

        mean_x0 = layers.mean(x[0])
        mean_x1 = layers.mean(x[1])
        mean_x2 = layers.mean(x[2])

        x_sum = layers.sums(input=[mean_x0, mean_x1, mean_x2])

        scope = core.Scope()
        cpu = core.CPUPlace()

        exe = Executor(cpu)

        tensor = numpy.random.random(size=(100, 100)).astype('float32')

        outs = exe.run(feed={'x0': tensor,
                             'x1': tensor,
                             'x2': tensor},
                       fetch_list=[a_sum, x_sum],
                       scope=scope)
        self.assertEqual(outs[0], outs[1])

        total_sum = layers.sums(input=[a_sum, x_sum])
        total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0)

        append_backward(total_sum_scaled)

        g_vars = map(default_main_program().global_block().var,
                     [each_x.name + "@GRAD" for each_x in x])
        g_out = [
            item.sum()
            for item in exe.run(
                feed={'x0': tensor,
                      'x1': tensor,
                      'x2': tensor},
                fetch_list=g_vars)
        ]
        g_out_sum = numpy.array(g_out).sum()

        # since our final gradient is 1 and the neural network are all linear
        # with mean_op.
        # the input gradient should also be 1
        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Example #56
0
    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        mean_inputs = map(block.var, output_names)

        if len(mean_inputs) == 1:
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
            op = block.append_op(
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
                op = block.append_op(
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
                avg_sum.append(cur_avg_loss)

            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
            op_sum = block.append_op(
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)

            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
            op_loss = block.append_op(
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)

        param_grad_list = append_backward(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
        return map(np.array,
                   executor.run(prog, feed_dict, fetch_list,
                                return_numpy=False))
Example #57
0
    def test_fibonacci(self):
        """
        Mimics Fibonacci Go example: https://tour.golang.org/concurrency/5
        """
        with framework.program_guard(framework.Program()):
            quit_ch_input_var = self._create_persistable_tensor(
                'quit_ch_input', core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.INT32)
            quit_ch_input = fill_constant(
                shape=[1],
                dtype=core.VarDesc.VarType.INT32,
                value=0,
                out=quit_ch_input_var)

            result = self._create_persistable_tensor(
                'result', core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.INT32)
            fill_constant(
                shape=[1],
                dtype=core.VarDesc.VarType.INT32,
                value=0,
                out=result)

            x = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)
            y = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.INT32, value=1)

            while_cond = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.BOOL, value=True)

            while_false = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.BOOL, value=False)

            x_tmp = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)

            def fibonacci(channel, quit_channel):
                while_op = While(cond=while_cond)
                with while_op.block():
                    result2 = fill_constant(
                        shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)

                    with fluid.Select() as select:
                        with select.case(
                                fluid.channel_send, channel, x, is_copy=True):
                            assign(input=x, output=x_tmp)
                            assign(input=y, output=x)
                            assign(elementwise_add(x=x_tmp, y=y), output=y)

                        with select.case(fluid.channel_recv, quit_channel,
                                         result2):
                            # Quit
                            helper = layer_helper.LayerHelper('assign')
                            helper.append_op(
                                type='assign',
                                inputs={'X': [while_false]},
                                outputs={'Out': [while_cond]})

            ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
            quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)

            with fluid.Go():
                for i in xrange(10):
                    fluid.channel_recv(ch1, result)
                    Print(result)

                fluid.channel_send(quit_ch, quit_ch_input)

            fibonacci(ch1, quit_ch)

            fluid.channel_close(ch1)
            fluid.channel_close(quit_ch)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            exe_result = exe.run(fetch_list=[result])
            self.assertEqual(exe_result[0][0], 34)
def train(use_cuda, save_dirname, is_local=True):
    scale_infer, avg_cost = model()

    # test program
    test_program = fluid.default_main_program().clone(for_test=True)

    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
    sgd_optimizer.minimize(avg_cost)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)

    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]

    def train_loop(main_program):
        exe.run(framework.default_startup_program())

        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
                outs = exe.run(program=main_program,
                               feed=feeder.feed(data),
                               fetch_list=[avg_cost])
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
                        avg_cost_np = exe.run(program=test_program,
                                              feed=feeder.feed(test_data),
                                              fetch_list=[avg_cost])
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
                            fluid.io.save_inference_model(save_dirname, [
                                "user_id", "gender_id", "age_id", "job_id",
                                "movie_id", "category_id", "movie_title"
                            ], [scale_infer], exe)
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Example #59
0
    def test_raw_api(self):
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant_batch_size_like(
                input=label, dtype='int64', shape=[1], value=5.0)
            cond = layers.less_than(x=label, y=limit)
            true_image, false_image = layers.split_lod_tensor(
                input=image, mask=cond)

            true_out = layers.create_tensor(dtype='float32')
            true_cond = layers.ConditionalBlock([true_image])

            with true_cond.block():
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=true_out)

            false_out = layers.create_tensor(dtype='float32')
            false_cond = layers.ConditionalBlock([false_image])

            with false_cond.block():
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=false_out)

            prob = layers.merge_lod_tensor(
                in_true=true_out, in_false=false_out, mask=cond, x=image)
            loss = layers.cross_entropy(input=prob, label=label)
            avg_loss = layers.mean(loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(startup_prog)
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = np.expand_dims(y_data, axis=1)

                outs = exe.run(prog,
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)