Example #1
0
def masks_to_boxes(masks):
    """
    Compute the bounding boxes around the provided masks

    The masks should be in format [N, H, W] where N is the number
    of masks, (H, W) are the spatial dimensions.

    Returns a [N, 4] tensors, with the boxes in xyxy format
    """
    if np.sum(masks.shape) == 0:
        return dg.to_variable(np.zeros((0, 4)))

    h, w = masks.shape[-2:]
    y = dg.to_variable(np.arange(0, h, 1, dtype="float32"))
    x = dg.to_variable(np.arange(0, w, 1, dtype="float32"))
    y, x = T.meshgrid([y, x])  # [h, w]

    x_mask = (masks * L.unsqueeze(x, [0]))  # [N, H, W]
    x_max = L.reduce_max(L.flatten(x_mask, axis=1), dim=-1)
    non_mask = dg.to_variable(~masks.numpy())
    x_mask[non_mask] = 1e8
    x_min = L.reduce_min(L.flatten(x_mask, axis=1), dim=-1)

    y_mask = (masks * L.unsqueeze(y, [0]))  # [N, H, W]
    y_max = L.reduce_max(L.flatten(y_mask, axis=1), dim=-1)
    y_mask[non_mask] = 1e8
    y_min = L.reduce_min(L.flatten(y_mask, axis=1), dim=-1)

    return L.stack([x_min, y_min, x_max, y_max], 1)
Example #2
0
 def loss(self, predictions, labels):
     logits, input_seqlen = predictions
     logits = L.flatten(logits, axis=2)
     labels = L.flatten(labels, axis=2)
     ce_loss, probs = L.softmax_with_cross_entropy(logits=logits,
                                                   label=labels,
                                                   return_softmax=True)
     loss = L.mean(x=ce_loss)
     return loss
    def forward(self, x):
        # print(x[0, :, :, :, :].shape)
        x = self.conv1(x)
        # print("conv1 shape", x.shape)
        x = self.bn1(x)
        x = relu(x)
        if not self.no_max_pool:
            x = pool3d(x, pool_size=3, pool_type='max',
                      pool_stride=2, pool_padding=1,
                      data_format="NCDHW")

        # print("conv1 shape", x.shape)

        x = self.layer1(x)
        # print("layer1 shape", x.shape)

        x = self.layer2(x)
        # print("layer2 shape", x.shape)

        x = self.layer3(x)
        # print("layer3 shape", x.shape)

        x = self.layer4(x)
        # print("layer4 shape", x.shape)

        x = adaptive_pool3d(x, pool_size=[1, 1, 1],
                               pool_type='avg')

        x = flatten(x)
        x = self.fc(x)

        return x
Example #4
0
 def test_flatten(self):
     program = Program()
     with program_guard(program):
         x = layers.data(name='x',
                         append_batch_size=False,
                         shape=[4, 4, 3],
                         dtype="float32")
         out = layers.flatten(x, axis=1, name="flatten")
         self.assertIsNotNone(out)
Example #5
0
    def network_d(self, input, name="discriminator"):

        h_conv1 = conv2d(input,
                         num_filters=64,
                         filter_size=5,
                         stride=2,
                         padding=2,
                         activation_fn='leaky_relu',
                         relufactor=0.2,
                         name=name + '_conv1')
        h_dropout1 = layers.dropout(h_conv1, dropout_prob=0.3)

        h_conv2 = conv2d(h_dropout1,
                         num_filters=128,
                         filter_size=5,
                         stride=2,
                         padding=2,
                         activation_fn='leaky_relu',
                         relufactor=0.2,
                         name=name + '_conv2')
        h_dropout2 = layers.dropout(h_conv2, dropout_prob=0.3)

        h_conv3 = conv2d(h_dropout2,
                         num_filters=128,
                         filter_size=3,
                         stride=2,
                         padding_type="SAME",
                         activation_fn='leaky_relu',
                         relufactor=0.2,
                         name=name + '_conv3')
        h_dropout3 = layers.dropout(h_conv3, dropout_prob=0.3)

        h_conv4 = conv2d(h_dropout3,
                         num_filters=256,
                         filter_size=3,
                         stride=1,
                         padding_type="SAME",
                         activation_fn='leaky_relu',
                         relufactor=0.2,
                         name=name + '_conv4')
        h_dropout4 = layers.dropout(h_conv4, dropout_prob=0.3)

        features = layers.flatten(h_conv2)

        fake = linear(features, output_size=1, name=name + '_fc1')
        aux = linear(features,
                     output_size=self.num_classes,
                     name=name + '_fc2')

        return fake, aux
Example #6
0
    def _forward_impl(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        x = self.avgpool(x)
        x = L.flatten(x, 1)
        x = self.fc(x)

        return x
Example #7
0
    def net(self, inputs):
        print(inputs.shape)

        x = conv2d(inputs, 64, 3, padding=1, act='relu')
        x = conv2d(x, 64, 3, padding=1, act='relu')
        x = pool2d(x, 2, pool_stride=2)
        print(x.shape)

        x = conv2d(x, 128, 3, padding=1, act='relu')
        x = conv2d(x, 128, 3, padding=1, act='relu')
        x = pool2d(x, 2, pool_stride=2)
        print(x.shape)

        x = conv2d(x, 256, 3, padding=1, act='relu')
        x = conv2d(x, 256, 3, padding=1, act='relu')
        x = conv2d(x, 256, 3, padding=1, act='relu')
        x = pool2d(x, 2, pool_stride=2)
        print(x.shape)

        x = conv2d(x, 512, 3, padding=1, act='relu')
        x = conv2d(x, 512, 3, padding=1, act='relu')
        x = conv2d(x, 512, 3, padding=1, act='relu')
        x = pool2d(x, 2, pool_stride=2)
        print(x.shape)

        x = conv2d(x, 512, 3, padding=1, act='relu')
        x = conv2d(x, 512, 3, padding=1, act='relu')
        x = conv2d(x, 512, 3, padding=1, act='relu')
        x = pool2d(x, 2, pool_stride=2)
        print(x.shape)

        x = flatten(x)
        x = fc(x, 4096, act='relu')
        x = fc(x, 4096, act='relu')
        out = fc(x, self.class_num)
        print(out.shape)

        return out
Example #8
0
    def net(self, inputs=None):
        if self.inputs is None:
            self.inputs = inputs or fluid.layers.data(
                name=self.name + "_image",
                shape=self.image_size,
                dtype='float32')

        x = conv2d(self.inputs,
                   32,
                   3,
                   stride=2,
                   padding=1,
                   act='leaky_relu',
                   name=self.name + "_conv2d_1")
        x = dropout(x, 0.25)

        x = down_sampling_2(x, 64, name=self.name + "_64×32*32")
        x = down_sampling_2(x, 128, name=self.name + "_128×16*16")
        x = down_sampling_2(x, 256, name=self.name + "_256×8*8")

        x = flatten(x, name=self.name + "_fc")
        x = fc(x, 1, act="sigmoid")

        return x
Example #9
0
num_classes = 10
epochs = 12

img_rows = 28
img_cols = 28

# define the model

X = layers.data(name="img", shape=[-1, 1, 28, 28], dtype="float32")
Y = layers.data(name="label", shape=[-1, 1], dtype="int64")

h_conv = layers.conv2d(X, num_filters=32, filter_size=(3, 3), act="relu")
h_conv = layers.conv2d(h_conv, num_filters=64, filter_size=(3, 3), act="relu")
h_pool = layers.pool2d(h_conv, pool_size=(2, 2))
h_dropout = layers.dropout(h_pool, dropout_prob=0.25)
h_flatten = layers.flatten(h_dropout)
h_fc = layers.fc(h_flatten,
                 size=128,
                 act="relu",
                 bias_attr=fluid.param_attr.ParamAttr(name="b_0"))
h_dropout2 = layers.dropout(h_fc, dropout_prob=0.25)
pred = layers.fc(h_dropout2,
                 size=num_classes,
                 act="softmax",
                 bias_attr=fluid.param_attr.ParamAttr(name="b_1"))

loss = layers.reduce_mean(layers.cross_entropy(input=pred, label=Y))
acc = layers.accuracy(input=pred, label=Y)

test_program = fluid.default_main_program().clone(for_test=True)
 def _reshape_to_2d(var):
     return layers.flatten(x=var, axis=2)