Example #1
0
    def __init__(self, conv_dim=64, repeat_num=3, w=0.01):
        super(MANet, self).__init__()
        self.encoder = TNetDown(conv_dim=conv_dim, repeat_num=repeat_num)
        curr_dim = conv_dim * 4
        self.w = w
        self.beta = nn.Conv2d(curr_dim, curr_dim, kernel_size=3, padding=1)
        self.gamma = nn.Conv2d(curr_dim, curr_dim, kernel_size=3, padding=1)
        self.simple_spade = GetMatrix(curr_dim, 1)  # get the makeup matrix
        self.repeat_num = repeat_num
        for i in range(repeat_num):
            setattr(self, "bottlenecks_" + str(i),
                    ResidualBlock(dim_in=curr_dim, dim_out=curr_dim, mode='t'))
        # Up-Sampling
        self.upsamplers = []
        self.up_betas = []
        self.up_gammas = []
        self.up_acts = []
        y_dim = curr_dim
        for i in range(2):
            layers = []
            layers.append(
                nn.ConvTranspose2d(curr_dim,
                                   curr_dim // 2,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1,
                                   bias_attr=False))
            layers.append(
                nn.InstanceNorm2d(curr_dim // 2,
                                  weight_attr=False,
                                  bias_attr=False))

            setattr(self, "up_acts_" + str(i), nn.ReLU())
            setattr(
                self, "up_betas_" + str(i),
                nn.ConvTranspose2d(y_dim,
                                   curr_dim // 2,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1))
            setattr(
                self, "up_gammas_" + str(i),
                nn.ConvTranspose2d(y_dim,
                                   curr_dim // 2,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1))
            setattr(self, "up_samplers_" + str(i), nn.Sequential(*layers))
            curr_dim = curr_dim // 2
        self.img_reg = [
            nn.Conv2d(curr_dim,
                      3,
                      kernel_size=7,
                      stride=1,
                      padding=3,
                      bias_attr=False)
        ]
        self.img_reg = nn.Sequential(*self.img_reg)
Example #2
0
    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)

        if self.output_padding != 0:
            output_size = None
        else:
            output_size = self.output_size

        conv = nn.ConvTranspose2d(
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
            output_padding=self.output_padding,
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
            data_format=self.data_format)
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
        y_var = conv(x_var, output_size)
        y_np = y_var.numpy()
        return y_np
Example #3
0
    def __init__(self,
                 input_nc,
                 output_nc,
                 ngf=64,
                 norm_type='instance',
                 use_dropout=False,
                 n_blocks=6,
                 padding_type='reflect'):
        """Construct a Resnet-based generator

        Args:
            input_nc (int)      -- the number of channels in input images
            output_nc (int)     -- the number of channels in output images
            ngf (int)           -- the number of filters in the last conv layer
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers
            n_blocks (int)      -- the number of ResNet blocks
            padding_type (str)  -- the name of padding layer in conv layers: reflect | replicate | zero
        """
        assert (n_blocks >= 0)
        super(ResnetGenerator, self).__init__()

        norm_layer = build_norm_layer(norm_type)
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm
        else:
            use_bias = norm_layer == nn.InstanceNorm

        model = [
            ReflectionPad2d(3),
            nn.Conv2d(input_nc,
                      ngf,
                      kernel_size=7,
                      padding=0,
                      bias_attr=use_bias),
            norm_layer(ngf),
            nn.ReLU()
        ]

        n_downsampling = 2
        for i in range(n_downsampling):  # add downsampling layers
            mult = 2**i
            model += [
                nn.Conv2d(ngf * mult,
                          ngf * mult * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias_attr=use_bias),
                norm_layer(ngf * mult * 2),
                nn.ReLU()
            ]

        mult = 2**n_downsampling
        for i in range(n_blocks):  # add ResNet blocks

            model += [
                ResnetBlock(ngf * mult,
                            padding_type=padding_type,
                            norm_layer=norm_layer,
                            use_dropout=use_dropout,
                            use_bias=use_bias)
            ]

        for i in range(n_downsampling):  # add upsampling layers
            mult = 2**(n_downsampling - i)
            model += [
                nn.ConvTranspose2d(ngf * mult,
                                   int(ngf * mult / 2),
                                   kernel_size=3,
                                   stride=2,
                                   padding=1,
                                   output_padding=1,
                                   bias_attr=use_bias),
                norm_layer(int(ngf * mult / 2)),
                nn.ReLU()
            ]
        model += [ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]

        self.model = nn.Sequential(*model)
Example #4
0
    def __init__(self,
                 input_channel,
                 output_nc,
                 ngf=64,
                 norm_type='instance',
                 use_dropout=False,
                 n_blocks=9,
                 padding_type='reflect'):
        super(MobileResnetGenerator, self).__init__()

        norm_layer = build_norm_layer(norm_type)
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == InstanceNorm
        else:
            use_bias = norm_layer == InstanceNorm

        self.model = nn.LayerList([
            nn.ReflectionPad2d([3, 3, 3, 3]),
            nn.Conv2d(input_channel,
                      int(ngf),
                      kernel_size=7,
                      padding=0,
                      bias_attr=use_bias),
            norm_layer(ngf),
            nn.ReLU()
        ])

        n_downsampling = 2
        for i in range(n_downsampling):
            mult = 2**i
            self.model.extend([
                nn.Conv2d(ngf * mult,
                          ngf * mult * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias_attr=use_bias),
                norm_layer(ngf * mult * 2),
                nn.ReLU()
            ])

        mult = 2**n_downsampling

        for i in range(n_blocks):
            self.model.extend([
                MobileResnetBlock(ngf * mult,
                                  ngf * mult,
                                  padding_type=padding_type,
                                  norm_layer=norm_layer,
                                  use_dropout=use_dropout,
                                  use_bias=use_bias)
            ])

        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            output_size = (i + 1) * 128
            self.model.extend([
                nn.ConvTranspose2d(ngf * mult,
                                   int(ngf * mult / 2),
                                   kernel_size=3,
                                   stride=2,
                                   padding=1,
                                   output_padding=1,
                                   bias_attr=use_bias),
                norm_layer(int(ngf * mult / 2)),
                nn.ReLU()
            ])

        self.model.extend([nn.ReflectionPad2d([3, 3, 3, 3])])
        self.model.extend(
            [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)])
        self.model.extend([nn.Tanh()])
Example #5
0
    def __init__(self,
                 outer_nc,
                 inner_nc,
                 input_nc=None,
                 submodule=None,
                 outermost=False,
                 innermost=False,
                 norm_layer=nn.BatchNorm,
                 use_dropout=False):
        """Construct a Unet submodule with skip connections.

        Parameters:
            outer_nc (int) -- the number of filters in the outer conv layer
            inner_nc (int) -- the number of filters in the inner conv layer
            input_nc (int) -- the number of channels in input images/features
            submodule (UnetSkipConnectionBlock) -- previously defined submodules
            outermost (bool)    -- if this module is the outermost module
            innermost (bool)    -- if this module is the innermost module
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers.
        """
        super(UnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm
        else:
            use_bias = norm_layer == nn.InstanceNorm
        if input_nc is None:
            input_nc = outer_nc
        downconv = nn.Conv2d(input_nc,
                             inner_nc,
                             kernel_size=4,
                             stride=2,
                             padding=1,
                             bias_attr=use_bias)
        downrelu = nn.LeakyReLU(0.2)
        downnorm = norm_layer(inner_nc)
        uprelu = nn.ReLU()
        upnorm = norm_layer(outer_nc)

        if outermost:
            upconv = nn.ConvTranspose2d(inner_nc * 2,
                                        outer_nc,
                                        kernel_size=4,
                                        stride=2,
                                        padding=1)
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(inner_nc,
                                        outer_nc,
                                        kernel_size=4,
                                        stride=2,
                                        padding=1,
                                        bias_attr=use_bias)
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(inner_nc * 2,
                                        outer_nc,
                                        kernel_size=4,
                                        stride=2,
                                        padding=1,
                                        bias_attr=use_bias)
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]

            if use_dropout:
                model = down + [submodule] + up + [nn.Dropout(0.5)]
            else:
                model = down + [submodule] + up

        self.model = nn.Sequential(*model)