def _attention(self, direct, cur_token, prev, to_apply, to_apply_proj): with layer.mixed(size=cur_token.size, bias_attr=Attr.Param(direct + '.bp', initial_std=0.), act=Act.Linear()) as proj: proj += layer.full_matrix_projection(input=cur_token, param_attr=Attr.Param(direct + '.wp')) proj += layer.full_matrix_projection(input=prev, param_attr=Attr.Param(direct + '.wr')) expanded = layer.expand(input=proj, expand_as=to_apply) att_context = layer.addto(input=[expanded, to_apply_proj], act=Act.Tanh(), bias_attr=False) att_weights = layer.fc(input=att_context, param_attr=Attr.Param(direct + '.w'), bias_attr=Attr.Param(direct + '.b', initial_std=0.), act=Act.SequenceSoftmax(), size=1) scaled = layer.scaling(input=to_apply, weight=att_weights) applied = layer.pooling(input=scaled, pooling_type=paddle.pooling.Sum()) return applied
def new_step(y): mem = layer.memory(name="rnn_state", size=hidden_dim) out = layer.fc(input=[y, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out
def step(y): mem = conf_helps.memory(name="rnn_state", size=hidden_dim) out = conf_helps.fc_layer(input=[y, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out
def step(y, wid): z = layer.embedding(input=wid, size=word_dim) mem = layer.memory(name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = layer.fc(input=[y, z, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out
def _step(self, name, h_q_all, q_proj, h_p_cur): """ Match-LSTM step. This function performs operations done in one time step. Args: h_p_cur: Current hidden of paragraph encodings: h_i. This is the `REAL` input of the group, like x_t in normal rnn. h_q_all: Question encodings. Returns: The $h^{r}_{i}$ in the paper. """ direct = 'left' if 'left' in name else 'right' h_r_prev = paddle.layer.memory(name=name + '_out_', size=h_q_all.size, boot_layer=None) q_expr = self._attention(direct, h_p_cur, h_r_prev, h_q_all, q_proj) z_cur = self.fusion_layer(h_p_cur, q_expr) with layer.mixed(size=h_q_all.size * 4, act=Act.Tanh(), bias_attr=False) as match_input: match_input += layer.full_matrix_projection( input=z_cur, param_attr=Attr.Param('match_input_%s.w0' % direct)) step_out = paddle.networks.lstmemory_unit( name=name + '_out_', out_memory=h_r_prev, param_attr=Attr.Param('step_lstm_%s.w' % direct), input_proj_bias_attr=Attr.Param('step_lstm_mixed_%s.bias' % direct, initial_std=0.), lstm_bias_attr=Attr.Param('step_lstm_%s.bias' % direct, initial_std=0.), input=match_input, size=h_q_all.size) return step_out
def _step(self, name, h_q_all, q_proj, h_p_cur, qe_comm, ee_comm): """ Match-LSTM step. This function performs operations done in one time step. Args: h_p_cur: Current hidden of paragraph encodings: h_i. This is the `REAL` input of the group, like x_t in normal rnn. h_q_all: Question encodings. Returns: The $h^{r}_{i}$ in the paper. """ conf = mLSTM_crf_config.TrainingConfig() direct = 'left' if 'left' in name else 'right' # 获取上一个时间步的输出 h_r_prev = paddle.layer.memory(name=name + '_out_', size=h_q_all.size, boot_layer=None) # h_p_cur :: Current hidden of paragraph encodings # h_q_all :: q wordEmbedding # q_proj :: q_proj_(left or right) q_expr = self._attention(direct, h_p_cur, h_r_prev, h_q_all, q_proj) z_cur = self.fusion_layer(h_p_cur, q_expr) # feature embeddings comm_initial_std = 1 / math.sqrt(64.0) qe_comm_emb = paddle.layer.embedding(input=qe_comm, size=conf.com_vec_dim, param_attr=paddle.attr.ParamAttr( name="_cw_embedding.w0", initial_std=comm_initial_std, l2_rate=conf.default_l2_rate)) ee_comm_emb = paddle.layer.embedding(input=ee_comm, size=conf.com_vec_dim, param_attr=paddle.attr.ParamAttr( name="_eecom_embedding.w0", initial_std=comm_initial_std, l2_rate=conf.default_l2_rate)) # layer.mixed :: 综合输入映射到指定维度,为 lstm 的输入做准备! with layer.mixed(size=h_q_all.size * 4, act=Act.Tanh(), bias_attr=False) as match_input: match_input += layer.full_matrix_projection( input=z_cur, param_attr=Attr.Param('match_input_z_%s.w0' % direct)) match_input += layer.full_matrix_projection( input=qe_comm_emb, param_attr=Attr.Param('match_input_qe_%s.w0' % direct)) match_input += layer.full_matrix_projection( input=ee_comm_emb, param_attr=Attr.Param('match_input_ee_%s.w0' % direct)) step_out = paddle.networks.lstmemory_unit( name=name + '_out_', out_memory=h_r_prev, param_attr=Attr.Param('step_lstm_%s.w' % direct), input_proj_bias_attr=Attr.Param('step_lstm_mixed_%s.bias' % direct, initial_std=0.), lstm_bias_attr=Attr.Param('step_lstm_%s.bias' % direct, initial_std=0.), input=match_input, size=h_q_all.size) return step_out