Example #1
0
    def _prepare(self):
        # prepare reader
        self.test_reader = paddle.batch(
                           reader=self.test_reader.create_reader(),
                           batch_size=self.args.batch_size)

        # init paddle
        paddle.init(use_gpu=self.args.use_gpu,
                    trainer_count=self.args.trainer_count)

        # create parameters and trainer
        model_out = self.model()
        out_names = [x.name for x in model_out] \
                if isinstance(model_out, collections.Iterable) \
                else model_out.name
        self.logger.info("out type: {}".format(model_out))
        self.logger.info("out names: {}".format(out_names))
        try:
            self.parameters = paddle.parameters.Parameters.from_tar(
                              gzip.open(self.args.model_file, 'r'))
        except IOError:
            raise IOError('can not find: {}'.format(self.args.model_file))
        self.inferer = paddle.inference.Inference(
                       output_layer=model_out,
                       parameters=self.parameters)
Example #2
0
def main():
    # init
    paddle.init(use_gpu=False, trainer_count=1)

    # network config
    x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
    y_predict = paddle.layer.fc(input=x,
                                param_attr=paddle.attr.Param(name='w'),
                                size=1,
                                act=paddle.activation.Linear(),
                                bias_attr=paddle.attr.Param(name='b'))
    y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
    cost = paddle.layer.mse_cost(input=y_predict, label=y)

    # create parameters
    parameters = paddle.parameters.create(cost)

    # create optimizer of new remote updater to pserver
    optimizer = paddle.optimizer.Momentum(momentum=0, learning_rate=1e-3)

    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 is_local=False,
                                 pserver_spec=etcd_endpoints,
                                 use_etcd=True)

    # event_handler to print training and testing info
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            # FIXME: for cloud data reader, pass number is managed by master
            # should print the server side pass number
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f" % (
                    event.pass_id, event.batch_id, event.cost)

        if isinstance(event, paddle.event.EndPass):
            if (event.pass_id + 1) % 10 == 0:
                result = trainer.test(
                    reader=paddle.batch(
                        uci_housing.test(), batch_size=2),
                    feeding={'x': 0,
                             'y': 1})
                print "Test %d, %.2f" % (event.pass_id, result.cost)

    # training
    # NOTE: use uci_housing.train() as reader for non-paddlecloud training
    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                cloud_reader(
                    ["/pfs/dlnel/public/dataset/uci_housing/uci_housing*"],
                    etcd_endpoints),
                buf_size=500),
            batch_size=2),
        feeding={'x': 0,
                 'y': 1},
        event_handler=event_handler,
        num_passes=30)
Example #3
0
def main():
    paddle.init(use_gpu=False, trainer_count=1)
    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)
    firstword = paddle.layer.data(
        name="firstw", type=paddle.data_type.integer_value(dict_size))
    secondword = paddle.layer.data(
        name="secondw", type=paddle.data_type.integer_value(dict_size))
    thirdword = paddle.layer.data(
        name="thirdw", type=paddle.data_type.integer_value(dict_size))
    fourthword = paddle.layer.data(
        name="fourthw", type=paddle.data_type.integer_value(dict_size))
    nextword = paddle.layer.data(
        name="fifthw", type=paddle.data_type.integer_value(dict_size))

    Efirst = wordemb(firstword)
    Esecond = wordemb(secondword)
    Ethird = wordemb(thirdword)
    Efourth = wordemb(fourthword)

    contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
    hidden1 = paddle.layer.fc(input=contextemb,
                              size=hiddensize,
                              act=paddle.activation.Sigmoid(),
                              layer_attr=paddle.attr.Extra(drop_rate=0.5),
                              bias_attr=paddle.attr.Param(learning_rate=2),
                              param_attr=paddle.attr.Param(
                                  initial_std=1. / math.sqrt(embsize * 8),
                                  learning_rate=1))
    predictword = paddle.layer.fc(input=hidden1,
                                  size=dict_size,
                                  bias_attr=paddle.attr.Param(learning_rate=2),
                                  act=paddle.activation.Softmax())

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                result = trainer.test(
                    paddle.batch(
                        paddle.dataset.imikolov.test(word_dict, N), 32))
                print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics,
                    result.metrics)

    cost = paddle.layer.classification_cost(input=predictword, label=nextword)
    parameters = paddle.parameters.create(cost)
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=3e-3,
        regularization=paddle.optimizer.L2Regularization(8e-4))
    trainer = paddle.trainer.SGD(cost, parameters, adam_optimizer)
    trainer.train(
        paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32),
        num_passes=30,
        event_handler=event_handler)
Example #4
0
def main():
    # init
    paddle.init(use_gpu=False, trainer_count=1)

    # network config
    x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
    y_predict = paddle.layer.fc(input=x,
                                param_attr=paddle.attr.Param(name='w'),
                                size=1,
                                act=paddle.activation.Linear(),
                                bias_attr=paddle.attr.Param(name='b'))
    y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
    cost = paddle.layer.mse_cost(input=y_predict, label=y)

    # create parameters
    parameters = paddle.parameters.create(cost)

    # create optimizer
    optimizer = paddle.optimizer.Momentum(momentum=0)

    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer)

    # event_handler to print training and testing info
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f" % (
                    event.pass_id, event.batch_id, event.cost)

        if isinstance(event, paddle.event.EndPass):
            if (event.pass_id + 1) % 10 == 0:
                result = trainer.test(
                    reader=paddle.batch(
                        uci_housing.test(), batch_size=2),
                    feeding={'x': 0,
                             'y': 1})
                print "Test %d, %.2f" % (event.pass_id, result.cost)

    # training
    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                uci_housing.train(), buf_size=500),
            batch_size=2),
        feeding={'x': 0,
                 'y': 1},
        event_handler=event_handler,
        num_passes=30)
Example #5
0
    def test_param_conf_order(self):
        paddle.init()
        cost = train()
        parameters = paddle.parameters.create(cost)
        adagrad = paddle.optimizer.AdaGrad(
            learning_rate=3e-3,
            regularization=paddle.optimizer.L2Regularization(rate=8e-4))

        trainer = paddle.trainer.SGD(cost, parameters, adagrad)
        for p in trainer.get_topology_proto().parameters:
            if p.name == "_fc1.w0":
                self.assertEqual(p.decay_rate, 6e-4)
            else:
                self.assertEqual(p.decay_rate, 8e-4)
Example #6
0
def main():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    crf_cost, crf_dec = db_lstm()

    # create parameters
    parameters = paddle.parameters.create([crf_cost, crf_dec])

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(
            average_window=0.5, max_average_window=10000), )

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)

    trainer = paddle.trainer.SGD(cost=crf_cost,
                                 parameters=parameters,
                                 update_equation=optimizer)
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

    trn_reader = paddle.batch(
        paddle.reader.shuffle(
            conll05.test(), buf_size=8192), batch_size=10)

    feeding = {
        'word_data': 0,
        'ctx_n2_data': 1,
        'ctx_n1_data': 2,
        'ctx_0_data': 3,
        'ctx_p1_data': 4,
        'ctx_p2_data': 5,
        'verb_data': 6,
        'mark_data': 7,
        'target': 8
    }

    trainer.train(
        reader=trn_reader,
        event_handler=event_handler,
        num_passes=10000,
        feeding=feeding)
Example #7
0
def main(task="train", use_gpu=False, trainer_count=1, save_dir="models"):
    if task == "train":
        if not os.path.exists(save_dir):
            os.mkdir(save_dir)

        paddle.init(use_gpu=use_gpu, trainer_count=trainer_count)
        cost = network()
        parameters = paddle.parameters.create(cost)
        optimizer = paddle.optimizer.Momentum(
            learning_rate=0.1 / 128.0,
            momentum=0.9,
            regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))

        trainer = paddle.trainer.SGD(cost=cost,
                                     parameters=parameters,
                                     update_equation=optimizer)

        def event_handler(event):
            if isinstance(event, paddle.event.EndIteration):
                if event.batch_id % 100 == 0:
                    logger.info("Pass %d, Batch %d, Cost %f, %s" %
                                (event.pass_id, event.batch_id, event.cost,
                                 event.metrics))
            if isinstance(event, paddle.event.EndPass):
                with gzip.open(
                        os.path.join(save_dir, "params_pass_%d.tar" %
                                     event.pass_id), "w") as f:
                    trainer.save_parameter_to_tar(f)

        trainer.train(
            reader=paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.mnist.train(), buf_size=8192),
                batch_size=128),
            event_handler=event_handler,
            num_passes=5)
    elif task == "dump_config":
        predict = network(is_infer=True)
        dump_v2_config(predict, "trainer_config.bin", True)
    else:
        raise RuntimeError(("Error value for parameter task. "
                            "Available options are: train and dump_config."))
Example #8
0
    def _prepare(self):
        # prepare reader
        self.train_reader = paddle.batch(
                            reader=self.train_reader.create_reader(),
                            batch_size=self.args.batch_size)
        self.test_reader = paddle.batch(
                           reader=self.test_reader.create_reader(),
                           batch_size=self.args.batch_size)

        # init paddle
        paddle.init(use_gpu=self.args.use_gpu,
                    trainer_count=self.args.trainer_count)

        # create optimizer
        optimizer = paddle.optimizer.RMSProp(
                    learning_rate=self.args.learning_rate,
                    regularization=opt.L2Regularization(rate=self.args.l2))

        # create parameters and trainer
        model_out = self.model()
        if self.args.init_from:
            self.parameters = paddle.parameters.Parameters.from_tar(
                              gzip.open(self.args.init_from, 'r'))
        else:
            self.parameters = paddle.parameters.create(model_out)
        if self.args.pre_emb.strip() != '':
            embeddings = np.loadtxt(self.args.pre_emb,
                    dtype=float)[:self.args.vocab_size]
            self.parameters.set(self.model.name + '.embs', embeddings)
            self.logger.info('init emb from {} to {}'.format(
                self.args.pre_emb,
                self.model.name + '.embs'))

        self.trainer = paddle.trainer.SGD(cost=model_out,
                                          parameters=self.parameters,
                                          update_equation=optimizer)
def test_demo():
    # PaddlePaddle init
    paddle.init(use_gpu=True, gpu_id=FLAGS.gpu_id)
    params = sun3d.set_params()
    inputs = d_net.get_demon_inputs(params)

    # Add neural network config
    outputs_bs = d_net.bootstrap_net(inputs, params)
    outputs_it = d_net.iterative_net(inputs, params)
    outputs_re = d_net.refine_net(inputs, params)
    out_fields = ['flow', 'depth_inv', 'normal', 'rotation', 'translation']
    my_g_layer_map = {}
    parameters_bs, topo_bs = paddle.parameters.create(
        [outputs_bs[x] for x in out_fields])
    my_g_layer_map.update(cp.g_layer_map)
    parameters_it, topo_it = paddle.parameters.create(
        [outputs_it[x] for x in out_fields])
    my_g_layer_map.update(cp.g_layer_map)
    parameters_re, topo_re = paddle.parameters.create(outputs_re['depth_0'])
    my_g_layer_map.update(cp.g_layer_map)

    print('load parameters')
    with gzip.open(FLAGS.model, 'r') as f:
        parameters_init = paddle.parameters.Parameters.from_tar(f)

    for name in parameters_bs.names():
        parameters_bs.set(name, parameters_init.get(name))
    for name in parameters_it.names():
        parameters_it.set(name, parameters_init.get(name))
    for name in parameters_re.names():
        parameters_re.set(name, parameters_init.get(name))

    # Read image pair 1, 2 flow
    for scene_name in params['train_scene'][1:]:
        image_list = preprocess_util.list_files(params['flow_path'] +
                                                scene_name + '/flow/')
        image2depth = sun3d.get_image_depth_matching(scene_name)
        for pair_name in image_list[0:2]:
            image1, image2, flow_gt, depth1_gt, normal1_gt = \
                sun3d.load_image_pair(scene_name, pair_name, image2depth)

            #transform and yield
            image1_new = uts.transform(image1.copy(),
                                       height=params['size'][0],
                                       width=params['size'][1])
            image2_new = uts.transform(image2.copy(),
                                       height=params['size'][0],
                                       width=params['size'][1])
            intrinsic = np.array([0.89115971, 1.18821287, 0.5, 0.5])

            test_data_bs = [(image1_new, image2_new)]
            feeding_bs = {'image1': 0, 'image2': 1}
            flow, depth_inv, normal, rotation, translation = paddle.infer(
                output=topo_bs,
                parameters=parameters_bs,
                input=test_data_bs,
                feeding=feeding_bs)

            for i in range(3):
                test_data_it = [(image1_new, image2_new, intrinsic, rotation,
                                 translation, depth_inv, normal)]
                feeding_it = {
                    'image1': 0,
                    'image2': 1,
                    'intrinsic': 2,
                    'rotation': 3,
                    'translation': 4,
                    'depth_inv': 5,
                    'normal': 6
                }
                flow, depth_inv, normal, rotation, translation = paddle.infer(
                    output=topo_it,
                    parameters=parameters_it,
                    input=test_data_it,
                    feeding=feeding_it)

            test_data_re = [(image1_new, image2_new, depth_inv)]
            feeding_re = {'image1': 0, 'image2': 1, 'depth_inv': 2}
            depth = paddle.infer(output=topo_re,
                                 parameters=parameters_re,
                                 input=test_data_re,
                                 feeding=feeding_re)

            layer_names = [
                outputs_it['flow'].name, outputs_it['normal'].name,
                outputs_re['depth_0'].name
            ]
            height_list = [my_g_layer_map[x].height for x in layer_names]
            width_list = [my_g_layer_map[x].width for x in layer_names]

            flow, normal, depth = vec2img(inputs=[flow, normal, depth],
                                          height=height_list,
                                          width=width_list)

            # visualize depth in 3D
            # image1_down = cv2.resize(image1,
            #     (depth.shape[1], depth.shape[0]))

            # visualize_prediction(
            #     depth=depth,
            #     image=np.uint8(image1_down.transpose([2, 0, 1])),
            #     rotation=rotation,
            #     translation=translation)
            with open('./test/depth_gt.npy', 'wb') as f:
                np.save(f, depth1_gt)

            with open('./test/depth_res.npy', 'wb') as f:
                np.save(f, depth)

            uts.plot_images(OrderedDict([
                ('image1', image1), ('image2', image2), ('flow', flow),
                ('flow_gt', flow_gt), ('depth', depth),
                ('depth_gt', depth1_gt), ('normal', (normal + 1.0) / 2.),
                ('normal_gt', (normal1_gt + 1.0) / 2)
            ]),
                            layout=[4, 2])
Example #10
0
def main():
    datadim = 3 * 32 * 32
    classdim = 10

    # PaddlePaddle init
    paddle.init(use_gpu=False, trainer_count=1)

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(datadim))

    # Add neural network config
    # option 1. resnet
    # net = resnet_cifar10(image, depth=32)
    # option 2. vgg
    net = vgg_bn_drop(image)

    out = paddle.layer.fc(input=net,
                          size=classdim,
                          act=paddle.activation.Softmax())

    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(classdim))
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    momentum_optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
        learning_rate=0.1 / 128.0,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=50000 * 100,
        learning_rate_schedule='discexp',
        batch_size=128)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(
                reader=paddle.batch(
                    paddle.dataset.cifar.test10(), batch_size=128),
                feeding={'image': 0,
                         'label': 1})
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    # Create trainer
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=momentum_optimizer)
    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(), buf_size=50000),
            batch_size=128),
        num_passes=5,
        event_handler=event_handler,
        feeding={'image': 0,
                 'label': 1})
Example #11
0
            seq = []

    prob = beam_result[0]
    for i in xrange(gen_num):
        print "\n*******************************************************\n"
        print "src:", ' '.join([src_dict.get(w) for w in gen_data[i][0]]), "\n"
        for j in xrange(beam_size):
            print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]


if __name__ == '__main__':
    args = parse_args()

    dict_size = 30000

    paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)

    # use the first 3 samples for generation
    gen_creator = paddle.dataset.wmt14.gen(dict_size)
    gen_data = []
    gen_num = 3
    for item in gen_creator():
        gen_data.append((item[0], ))
        if len(gen_data) == gen_num:
            break

    generate(gen_data,
             dict_size=dict_size,
             model_path=args.model_path,
             beam_size=args.beam_size)
Example #12
0
    lstm_last = paddle.layer.pooling(input=inputs[1],
                                     pooling_type=paddle.pooling.Max())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost


if __name__ == '__main__':
    # init
    paddle.init(use_gpu=False)

    #data
    print 'load dictionary...'
    word_dict = paddle.dataset.imdb.word_dict()
    dict_dim = len(word_dict)
    class_dim = 2
    train_reader = paddle.batch(paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
                                batch_size=100)
    test_reader = paddle.batch(lambda: paddle.dataset.imdb.test(word_dict),
                               batch_size=100)

    feeding = {'word': 0, 'label': 1}

    # network config
Example #13
0
def main():
    # 初始化定义跑模型的设备
    paddle.init(use_gpu=with_gpu, trainer_count=1)

    # 读取数据
    images = paddle.layer.data(
        name='pixel', type=paddle.data_type.dense_vector(784))
    label = paddle.layer.data(
        name='label', type=paddle.data_type.integer_value(10))

    # 调用之前定义的网络结构
    predict = convolutional_neural_network_org(images)#原网络结构    
    # predict = convolutional_neural_network(images)

    # 定义损失函数
    cost = paddle.layer.classification_cost(input=predict, label=label)

    # 指定训练相关的参数
    parameters = paddle.parameters.create(cost)

    # 定义训练方法
    optimizer = paddle.optimizer.Momentum(
        learning_rate=0.1 / 128.0,
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))

    # 训练模型
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=optimizer)


    lists = []

    # 定义event_handler,输出训练过程中的结果
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
        if isinstance(event, paddle.event.EndPass):
            # 保存参数
            with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

            result = trainer.test(reader=paddle.batch(
                paddle.dataset.mnist.test(), batch_size=128))
            print "Test with Pass %d, Cost %f, %s\n" % (
                event.pass_id, result.cost, result.metrics)
            lists.append((event.pass_id, result.cost,
                          result.metrics['classification_error_evaluator']))

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=64),
        event_handler=event_handler,
        num_passes=50)

    # 找到训练误差最小的一次结果
    best = sorted(lists, key=lambda list: float(list[1]))[0]
    print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
    print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)

    # 加载数据   
    def load_image(file):
        im = Image.open(file).convert('L')
        im = im.resize((28, 28), Image.ANTIALIAS)
        im = np.array(im).astype(np.float32).flatten()
        im = im / 255.0
        return im

    # 测试结果
    test_data = []
    cur_dir = os.path.dirname(os.path.realpath(__file__))
    test_data.append((load_image(cur_dir + '/image/infer_3.png'), ))

    probs = paddle.infer(
        output_layer=predict, parameters=parameters, input=test_data)
    lab = np.argsort(-probs)  # probs and lab are the results of one batch data
    print "Label of image/infer_3.png is: %d" % lab[0][0]
Example #14
0
def main(train_data_file,
         test_data_file,
         vocab_file,
         target_file,
         emb_file,
         model_save_dir,
         num_passes=100,
         batch_size=64):
    if not os.path.exists(model_save_dir):
        os.mkdir(model_save_dir)

    word_dict = load_dict(vocab_file)
    label_dict = load_dict(target_file)

    word_vector_values = get_embedding(emb_file)

    word_dict_len = len(word_dict)
    label_dict_len = len(label_dict)

    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    crf_cost, crf_dec, target = ner_net(word_dict_len, label_dict_len)
    evaluator.sum(name="error", input=crf_dec)
    evaluator.chunk(name="ner_chunk",
                    input=crf_dec,
                    label=target,
                    chunk_scheme="IOB",
                    num_chunk_types=(label_dict_len - 1) / 2)

    # create parameters
    parameters = paddle.parameters.create(crf_cost)
    parameters.set("emb", word_vector_values)

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-4,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        gradient_clipping_threshold=25,
        model_average=paddle.optimizer.ModelAverage(average_window=0.5,
                                                    max_average_window=10000),
    )

    trainer = paddle.trainer.SGD(cost=crf_cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 extra_layers=crf_dec)

    train_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader(
        train_data_file, word_dict, label_dict),
                                                      buf_size=1000),
                                batch_size=batch_size)
    test_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader(
        test_data_file, word_dict, label_dict),
                                                     buf_size=1000),
                               batch_size=batch_size)

    feeding = {"word": 0, "mark": 1, "target": 2}

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 5 == 0:
                logger.info(
                    "Pass %d, Batch %d, Cost %f, %s" %
                    (event.pass_id, event.batch_id, event.cost, event.metrics))
            if event.batch_id % 50 == 0:
                result = trainer.test(reader=test_reader, feeding=feeding)
                logger.info("\nTest with Pass %d, Batch %d, %s" %
                            (event.pass_id, event.batch_id, result.metrics))

        if isinstance(event, paddle.event.EndPass):
            # save parameters
            with gzip.open(
                    os.path.join(model_save_dir,
                                 "params_pass_%d.tar.gz" % event.pass_id),
                    "w") as f:
                trainer.save_parameter_to_tar(f)

            result = trainer.test(reader=test_reader, feeding=feeding)
            logger.info("\nTest with Pass %d, %s" %
                        (event.pass_id, result.metrics))

    trainer.train(reader=train_reader,
                  event_handler=event_handler,
                  num_passes=num_passes,
                  feeding=feeding)
Example #15
0
def main():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    images = paddle.layer.data(
        name='pixel', type=paddle.data_type.dense_vector(784))
    label = paddle.layer.data(
        name='label', type=paddle.data_type.integer_value(10))

    # Here we can build the prediction network in different ways. Please
    # choose one by uncomment corresponding line.
    predict = softmax_regression(images)
    #predict = multilayer_perceptron(images)
    #predict = convolutional_neural_network(images)

    cost = paddle.layer.classification_cost(input=predict, label=label)
    parameters = paddle.parameters.create(cost)

    optimizer = paddle.optimizer.Momentum(
        learning_rate=0.1 / 128.0,
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))

    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 is_local=False,
                                 pserver_spec="localhost:3000")

    lists = []

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1000 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)

        elif isinstance(event, paddle.event.EndPass):
            result = trainer.test(reader=paddle.batch(
                paddle.dataset.mnist.test(), batch_size=128))
            print "Test with Pass %d, Cost %f, %s\n" % (
                event.pass_id, result.cost, result.metrics)
            lists.append((event.pass_id, result.cost,
                          result.metrics['classification_error_evaluator']))

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=128),
        event_handler=event_handler,
        num_passes=100)

    # find the best pass
    best = sorted(lists, key=lambda list: float(list[1]))[0]
    print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
    print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)

    test_creator = paddle.dataset.mnist.test()
    test_data = []
    for item in test_creator():
        test_data.append((item[0], ))
        if len(test_data) == 100:
            break

    # output is a softmax layer. It returns probabilities.
    # Shape should be (100, 10)
    probs = paddle.infer(
        output_layer=predict, parameters=parameters, input=test_data)
    print probs.shape
Example #16
0
def main():
    # get arguments from env

    # for local training
    TRUTH = ["true", "True", "TRUE", "1", "yes", "Yes", "YES"]
    cluster_train = os.getenv('PADDLE_CLUSTER_TRAIN', "False") in TRUTH
    use_gpu = os.getenv('PADDLE_INIT_USE_GPU', "False")

    if not cluster_train:
        paddle.init(
            use_gpu=use_gpu,
            trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")))
    else:
        paddle.init(
            use_gpu=use_gpu,
            trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")),
            port=int(os.getenv("PADDLE_INIT_PORT", "7164")),
            ports_num=int(os.getenv("PADDLE_INIT_PORTS_NUM", "1")),
            ports_num_for_sparse=int(
                os.getenv("PADDLE_INIT_PORTS_NUM_FOR_SPARSE", "1")),
            num_gradient_servers=int(
                os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "1")),
            trainer_id=int(os.getenv("PADDLE_INIT_TRAINER_ID", "0")),
            pservers=os.getenv("PADDLE_INIT_PSERVERS", "127.0.0.1"))
    fn = open("thirdparty/wuyi_train_thdpty/word_dict.pickle", "r")
    word_dict = pickle.load(fn)
    fn.close()
    dict_size = len(word_dict)
    firstword = paddle.layer.data(
        name="firstw", type=paddle.data_type.integer_value(dict_size))
    secondword = paddle.layer.data(
        name="secondw", type=paddle.data_type.integer_value(dict_size))
    thirdword = paddle.layer.data(
        name="thirdw", type=paddle.data_type.integer_value(dict_size))
    fourthword = paddle.layer.data(
        name="fourthw", type=paddle.data_type.integer_value(dict_size))
    nextword = paddle.layer.data(
        name="fifthw", type=paddle.data_type.integer_value(dict_size))

    Efirst = wordemb(firstword)
    Esecond = wordemb(secondword)
    Ethird = wordemb(thirdword)
    Efourth = wordemb(fourthword)

    contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
    hidden1 = paddle.layer.fc(input=contextemb,
                              size=hiddensize,
                              act=paddle.activation.Sigmoid(),
                              layer_attr=paddle.attr.Extra(drop_rate=0.5),
                              bias_attr=paddle.attr.Param(learning_rate=2),
                              param_attr=paddle.attr.Param(
                                  initial_std=1. / math.sqrt(embsize * 8),
                                  learning_rate=1))
    predictword = paddle.layer.fc(input=hidden1,
                                  size=dict_size,
                                  bias_attr=paddle.attr.Param(learning_rate=2),
                                  act=paddle.activation.Softmax())

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                result = trainer.test(
                    paddle.batch(
                        cluster_reader_cluster(cluster_test_file, node_id), 32))
                print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics,
                    result.metrics)

    cost = paddle.layer.classification_cost(input=predictword, label=nextword)
    parameters = paddle.parameters.create(cost)
    adagrad = paddle.optimizer.AdaGrad(
        learning_rate=3e-3,
        regularization=paddle.optimizer.L2Regularization(8e-4))
    trainer = paddle.trainer.SGD(cost,
                                 parameters,
                                 adagrad,
                                 is_local=not cluster_train)
    trainer.train(
        paddle.batch(cluster_reader_cluster(cluster_train_file, node_id), 32),
        num_passes=30,
        event_handler=event_handler)
def main():
    datadim = 3 * 32 * 32
    classdim = 10

    # PaddlePaddle init
    paddle.init(use_gpu=with_gpu, trainer_count=7)

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(datadim))

    # Add neural network config
    # option 1. resnet
    # net = resnet_cifar10(image, depth=32)
    # option 2. vgg
    net = simple_cnn(image)

    out = paddle.layer.fc(
        input=net, size=classdim, act=paddle.activation.Softmax())

    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(classdim))
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    momentum_optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
        learning_rate=0.1 / 128.0,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=50000 * 100,
        learning_rate_schedule='discexp')

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            # save parameters
            with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

            result = trainer.test(
                reader=paddle.batch(
                    paddle.dataset.cifar.test10(), batch_size=128),
                feeding={'image': 0,
                         'label': 1})
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    # Create trainer
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=momentum_optimizer)

    # Save the inference topology to protobuf.
    inference_topology = paddle.topology.Topology(layers=out)
    with open("inference_topology.pkl", 'wb') as f:
        inference_topology.serialize_for_inference(f)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(), buf_size=50000),
            batch_size=128),
        num_passes=200,
        event_handler=event_handler,
        feeding={'image': 0,
                 'label': 1})

    # inference
    from PIL import Image
    import numpy as np
    import os

    def load_image(file):
        im = Image.open(file)
        im = im.resize((32, 32), Image.ANTIALIAS)
        im = np.array(im).astype(np.float32)
        # The storage order of the loaded image is W(widht),
        # H(height), C(channel). PaddlePaddle requires
        # the CHW order, so transpose them.
        im = im.transpose((2, 0, 1))  # CHW
        # In the training phase, the channel order of CIFAR
        # image is B(Blue), G(green), R(Red). But PIL open
        # image in RGB mode. It must swap the channel order.
        im = im[(2, 1, 0), :, :]  # BGR
        im = im.flatten()
        im = im / 255.0
        return im

    test_data = []
    cur_dir = os.path.dirname(os.path.realpath(__file__))
    test_data.append((load_image(cur_dir + '/image/dog.png'), ))

    # users can remove the comments and change the model name
    # with open('params_pass_50.tar', 'r') as f:
    #    parameters = paddle.parameters.Parameters.from_tar(f)

    probs = paddle.infer(
        output_layer=out, parameters=parameters, input=test_data)
    lab = np.argsort(-probs)  # probs and lab are the results of one batch data
    print "Label of image/dog.png is: %d" % lab[0][0]
Example #18
0
def train(train_file_list_path, test_file_list_path, label_dict_path,
          model_save_dir):
    # 获取训练列表
    train_file_list = get_file_list(train_file_list_path)
    # 获取测试列表
    test_file_list = get_file_list(test_file_list_path)

    # 使用训练数据生成标记字典
    if not os.path.exists(label_dict_path):
        print(("Label dictionary is not given, the dictionary "
               "is automatically built from the training data."))
        build_label_dict(train_file_list, label_dict_path)

    # 获取标签字典
    char_dict = load_dict(label_dict_path)
    # 获取字典大小
    dict_size = len(char_dict)
    # 定义网络拓扑
    model = Model(dict_size, IMAGE_SHAPE, is_infer=False)

    # 初始化PaddlePaddle
    paddle.init(use_gpu=True, trainer_count=1)
    # 创建优化方法
    optimizer = paddle.optimizer.Momentum(momentum=0)
    # 创建训练参数
    params = paddle.parameters.create(model.cost)
    # 定义训练器
    trainer = paddle.trainer.SGD(cost=model.cost,
                                 parameters=params,
                                 update_equation=optimizer,
                                 extra_layers=model.eval)

    # 获取reader
    my_reader = Reader(char_dict=char_dict, image_shape=IMAGE_SHAPE)
    # 说明数据层之间的关系
    feeding = {'image': 0, 'label': 1}

    # 训练事件
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print("Pass %d, batch %d, Samples %d, Cost %f, Eval %s" %
                      (event.pass_id, event.batch_id,
                       event.batch_id * BATCH_SIZE, event.cost, event.metrics))

        if isinstance(event, paddle.event.EndPass):
            # 这里由于训练和测试数据共享相同的格式
            # 我们仍然使用reader.train_reader来读取测试数据
            test_reader = paddle.batch(my_reader.train_reader(test_file_list),
                                       batch_size=BATCH_SIZE)
            result = trainer.test(reader=test_reader, feeding=feeding)
            print("Test %d, Cost %f, Eval %s" %
                  (event.pass_id, result.cost, result.metrics))
            # 检查保存model的路径是否存在,如果不存在就创建
            if not os.path.exists(model_save_dir):
                os.mkdir(model_save_dir)
            with gzip.open(os.path.join(model_save_dir, "params_pass.tar.gz"),
                           "w") as f:
                trainer.save_parameter_to_tar(f)

    # 获取训练数据的reader
    train_reader = paddle.batch(paddle.reader.shuffle(
        my_reader.train_reader(train_file_list), buf_size=1000),
                                batch_size=BATCH_SIZE)
    # 开始训练
    trainer.train(reader=train_reader,
                  feeding=feeding,
                  event_handler=event_handler,
                  num_passes=5000)
Example #19
0
def train():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    feature_out = db_lstm()
    target = paddle.layer.data(name='target', type=d_type(label_dict_len))
    crf_cost = paddle.layer.crf(size=label_dict_len,
                                input=feature_out,
                                label=target,
                                param_attr=paddle.attr.Param(
                                    name='crfw',
                                    initial_std=default_std,
                                    learning_rate=mix_hidden_lr))

    crf_dec = paddle.layer.crf_decoding(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))
    evaluator.sum(input=crf_dec)

    # create parameters
    parameters = paddle.parameters.create(crf_cost)
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5,
                                                    max_average_window=10000),
    )

    trainer = paddle.trainer.SGD(cost=crf_cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 extra_layers=crf_dec)

    reader = paddle.batch(paddle.reader.shuffle(conll05.test(), buf_size=8192),
                          batch_size=10)

    feeding = {
        'word_data': 0,
        'ctx_n2_data': 1,
        'ctx_n1_data': 2,
        'ctx_0_data': 3,
        'ctx_p1_data': 4,
        'ctx_p2_data': 5,
        'verb_data': 6,
        'mark_data': 7,
        'target': 8
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                logger.info(
                    "Pass %d, Batch %d, Cost %f, %s" %
                    (event.pass_id, event.batch_id, event.cost, event.metrics))
            if event.batch_id and event.batch_id % 1000 == 0:
                result = trainer.test(reader=reader, feeding=feeding)
                logger.info("\nTest with Pass %d, Batch %d, %s" %
                            (event.pass_id, event.batch_id, result.metrics))

        if isinstance(event, paddle.event.EndPass):
            # save parameters
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

            result = trainer.test(reader=reader, feeding=feeding)
            logger.info("\nTest with Pass %d, %s" %
                        (event.pass_id, result.metrics))

    trainer.train(reader=reader,
                  event_handler=event_handler,
                  num_passes=10,
                  feeding=feeding)
Example #20
0
def cbow_main(cost_config, window_size=5, prefix="./output/cbow_softmax/",
              cpu_num=3,
              word_dict_limit=20000, emb_size=32,
              num_passes=2,
              batch_size_per_cpu=2000):
    assert word_dict_limit < MAX_WORDS
    assert window_size % 2 == 1
    paddle.init(use_gpu=False, trainer_count=cpu_num)
    words = []

    word_limit = word_dict_limit + 2

    for i in xrange(window_size):
        words.append(paddle.layer.data(name='word_%d' % i,
                                       type=paddle.data_type.integer_value(
                                           word_limit)))

    embs = []
    for w in words[:window_size / 2] + words[-window_size / 2 + 1:]:
        embs.append(
            paddle.layer.embedding(input=w, size=emb_size, param_attr=
            paddle.attr.Param(name='emb', sparse_update=True)))

    with paddle.layer.mixed(size=emb_size) as sum_emb:
        for emb in embs:
            sum_emb += paddle.layer.identity_projection(input=emb)

    label = words[window_size / 2]

    cost = cost_config(sum_emb, label, word_limit)

    parameters = paddle.parameters.create(cost)
    adam_optimizer = paddle.optimizer.RMSProp(
        learning_rate=1e-3)
    trainer = paddle.trainer.SGD(cost, parameters, adam_optimizer)

    counter = [0]
    total_cost = [0.0]

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            total_cost[0] += event.cost
            counter[0] += 1

            sys.stdout.write('.')
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, AvgCost %f" % (
                    event.pass_id, event.batch_id, total_cost[0] / counter[0])
            if event.batch_id % 1000000 == 0:
                with gzip.open(os.path.join(prefix, "model_%d_%d.tar.gz" % (
                        event.pass_id,
                        event.batch_id)),
                               'w') as f:
                    parameters.to_tar(f)

        if isinstance(event, paddle.event.EndPass):
            print "Pass %d" % event.pass_id
            with gzip.open(os.path.join(prefix, "model_%d.tar.gz" %
                    event.pass_id), 'w') as f:
                parameters.to_tar(f)

    trainer.train(
        paddle.batch(
            paddle.reader.buffered(
                reader_creator(window_size=window_size,
                               word_limit=word_dict_limit,
                               path="./preprocessed"), 16 * cpu_num * 4000),
            batch_size_per_cpu*cpu_num),
        num_passes=num_passes,
        event_handler=event_handler,
        feeding=[w.name for w in words])
def test_demo():
    # PaddlePaddle init
    paddle.init(use_gpu=True, gpu_id=FLAGS.gpu_id)
    params = sun3d.set_params()
    inputs = d_net.get_demon_inputs(params)

    params['stage'] = 2

    # Add neural network config
    outputs, out_field = d_net.get_demon_outputs(inputs,
                                                 params,
                                                 ext_inputs=None)
    parameters = paddle.parameters.create(outputs[out_field])

    print('load parameters')
    with gzip.open(FLAGS.model, 'r') as f:
        parameters_init = paddle.parameters.Parameters.from_tar(f)
    for name in parameters.names():
        parameters.set(name, parameters_init.get(name))

    # Read image pair 1, 2 flow
    for scene_name in params['train_scene'][1:]:
        image_list = preprocess_util.list_files(params['flow_path'] +
                                                scene_name + '/flow/')
        image2depth = sun3d.get_image_depth_matching(scene_name)

        for pair_name in image_list[0:2]:
            image1, image2, flow_gt, depth1_gt, normal1_gt = \
                sun3d.load_image_pair(scene_name, pair_name, image2depth)

            #transform and yield
            image1_new = uts.transform(image1.copy(),
                                       height=params['size'][0],
                                       width=params['size'][1])
            image2_new = uts.transform(image2.copy(),
                                       height=params['size'][0],
                                       width=params['size'][1])
            intrinsic = np.array([0.89115971, 1.18821287, 0.5, 0.5])

            test_data = [(image1_new, image2_new, intrinsic)]
            depth_name = 'depth' if params['stage'] < 5 else 'depth_0'
            out_fields = [
                'flow', depth_name, 'normal', 'rotation', 'translation'
            ]

            output_list = [outputs[x] for x in out_fields]
            flow, depth, normal, rotation, translation = paddle.infer(
                output_layer=output_list,
                parameters=parameters,
                input=test_data,
                feeding={
                    'image1': 0,
                    'image2': 1,
                    'intrinsic': 2
                })

            height_list = [cp.g_layer_map[outputs[x].name].height \
                            for x in ['flow', 'depth','normal']]
            width_list = [cp.g_layer_map[outputs[x].name].width \
                            for x in ['flow', 'depth','normal']]

            flow, depth, normal = vec2img(inputs=[flow, depth, normal],
                                          height=height_list,
                                          width=width_list)

            # visualize depth in 3D
            image1_down = cv2.resize(image1, (depth.shape[1], depth.shape[0]))

            visualize_prediction(depth=depth,
                                 image=np.uint8(
                                     image1_down.transpose([2, 0, 1])),
                                 rotation=rotation,
                                 translation=translation)

            uts.plot_images(OrderedDict([
                ('image1', image1), ('image2', image2), ('flow', flow),
                ('flow_gt', flow_gt), ('depth', depth),
                ('depth_gt', depth1_gt), ('normal', (normal + 1.0) / 2.),
                ('normal_gt', (normal1_gt + 1.0) / 2)
            ]),
                            layout=[4, 2])
Example #22
0
def main():
    paddle.init(use_gpu=False, trainer_count=1)
    is_generating = False

    # source and target dict dim.
    dict_size = 30000
    source_dict_dim = target_dict_dim = dict_size

    # train the network
    if not is_generating:
        cost = seqToseq_net(source_dict_dim, target_dict_dim)
        parameters = paddle.parameters.create(cost)

        # define optimize method and trainer
        optimizer = paddle.optimizer.Adam(
            learning_rate=5e-5,
            regularization=paddle.optimizer.L2Regularization(rate=8e-4))
        trainer = paddle.trainer.SGD(cost=cost,
                                     parameters=parameters,
                                     update_equation=optimizer)
        # define data reader
        wmt14_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.wmt14.train(dict_size), buf_size=8192),
            batch_size=5)

        # define event_handler callback
        def event_handler(event):
            if isinstance(event, paddle.event.EndIteration):
                if event.batch_id % 10 == 0:
                    print "\nPass %d, Batch %d, Cost %f, %s" % (
                        event.pass_id, event.batch_id, event.cost,
                        event.metrics)
                else:
                    sys.stdout.write('.')
                    sys.stdout.flush()

        # start to train
        trainer.train(
            reader=wmt14_reader, event_handler=event_handler, num_passes=2)

    # generate a english sequence to french
    else:
        # use the first 3 samples for generation
        gen_creator = paddle.dataset.wmt14.gen(dict_size)
        gen_data = []
        gen_num = 3
        for item in gen_creator():
            gen_data.append((item[0], ))
            if len(gen_data) == gen_num:
                break

        beam_gen = seqToseq_net(source_dict_dim, target_dict_dim, is_generating)
        # get the pretrained model, whose bleu = 26.92
        parameters = paddle.dataset.wmt14.model()
        # prob is the prediction probabilities, and id is the prediction word. 
        beam_result = paddle.infer(
            output_layer=beam_gen,
            parameters=parameters,
            input=gen_data,
            field=['prob', 'id'])

        # get the dictionary
        src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)

        # the delimited element of generated sequences is -1,
        # the first element of each generated sequence is the sequence length
        seq_list = []
        seq = []
        for w in beam_result[1]:
            if w != -1:
                seq.append(w)
            else:
                seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]]))
                seq = []

        prob = beam_result[0]
        beam_size = 3
        for i in xrange(gen_num):
            print "\n*******************************************************\n"
            print "src:", ' '.join(
                [src_dict.get(w) for w in gen_data[i][0]]), "\n"
            for j in xrange(beam_size):
                print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
Example #23
0
import paddle.v2 as paddle

# Initialize PaddlePaddle.
paddle.init(use_gpu=False, trainer_count=1)

# Configure the neural network.
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())

with open('fit_a_line.tar', 'r') as f:
    parameters = paddle.parameters.Parameters.from_tar(f)

# Infer using provided test data.
probs = paddle.infer(
    output_layer=y_predict,
    parameters=parameters,
    input=[item for item in paddle.dataset.uci_housing.test()()])

for i in xrange(len(probs)):
    print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)
Example #24
0
beam_size = 500
num_proc_bsearch = 1
num_proc_data = 1
alpha = 2.5
beta = 0.3
cutoff_prob = 1.0
cutoff_top_n = 40
decoding_method = 'ctc_beam_search'
error_rate_type = 'wer'
num_conv_layers = 2
num_rnn_layers = 3
rnn_layer_size = 2048
share_rnn_weights = True
specgram_type = 'linear'

paddle.init(use_gpu=USING_GPU, rnn_use_batch=True, trainer_count=trainer_count)

data_generator = DataGenerator(vocab_filepath=vocab_path,
                               mean_std_filepath=mean_std_path,
                               augmentation_config='{}',
                               specgram_type=specgram_type,
                               num_threads=num_proc_data,
                               keep_transcription_text=True)
batch_reader = data_generator.batch_reader_creator(manifest_path=test_manifest,
                                                   batch_size=batch_size,
                                                   min_batch_size=1,
                                                   sortagrad=False,
                                                   shuffle_method=None)

print('Loading inference model from files {}'.format(model_path))
log_file.write('Loading inference model from files {}'.format(model_path))
Example #25
0
def main():
    # get arguments from env

    # for local training
    TRUTH = ["true", "True", "TRUE", "1", "yes", "Yes", "YES"]
    cluster_train = os.getenv('PADDLE_CLUSTER_TRAIN', "False") in TRUTH
    use_gpu = os.getenv('PADDLE_INIT_USE_GPU', "False")

    if not cluster_train:
        paddle.init(use_gpu=use_gpu,
                    trainer_count=int(
                        os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")))
    else:
        paddle.init(use_gpu=use_gpu,
                    trainer_count=int(
                        os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")),
                    port=int(os.getenv("PADDLE_INIT_PORT", "7164")),
                    ports_num=int(os.getenv("PADDLE_INIT_PORTS_NUM", "1")),
                    ports_num_for_sparse=int(
                        os.getenv("PADDLE_INIT_PORTS_NUM_FOR_SPARSE", "1")),
                    num_gradient_servers=int(
                        os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "1")),
                    trainer_id=int(os.getenv("PADDLE_INIT_TRAINER_ID", "0")),
                    pservers=os.getenv("PADDLE_INIT_PSERVERS", "127.0.0.1"))
    fn = open("thirdparty/wuyi_train_thdpty/word_dict.pickle", "r")
    word_dict = pickle.load(fn)
    fn.close()
    dict_size = len(word_dict)
    firstword = paddle.layer.data(
        name="firstw", type=paddle.data_type.integer_value(dict_size))
    secondword = paddle.layer.data(
        name="secondw", type=paddle.data_type.integer_value(dict_size))
    thirdword = paddle.layer.data(
        name="thirdw", type=paddle.data_type.integer_value(dict_size))
    fourthword = paddle.layer.data(
        name="fourthw", type=paddle.data_type.integer_value(dict_size))
    nextword = paddle.layer.data(
        name="fifthw", type=paddle.data_type.integer_value(dict_size))

    Efirst = wordemb(firstword)
    Esecond = wordemb(secondword)
    Ethird = wordemb(thirdword)
    Efourth = wordemb(fourthword)

    contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
    hidden1 = paddle.layer.fc(input=contextemb,
                              size=hiddensize,
                              act=paddle.activation.Sigmoid(),
                              layer_attr=paddle.attr.Extra(drop_rate=0.5),
                              bias_attr=paddle.attr.Param(learning_rate=2),
                              param_attr=paddle.attr.Param(
                                  initial_std=1. / math.sqrt(embsize * 8),
                                  learning_rate=1))
    predictword = paddle.layer.fc(input=hidden1,
                                  size=dict_size,
                                  bias_attr=paddle.attr.Param(learning_rate=2),
                                  act=paddle.activation.Softmax())

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                result = trainer.test(
                    paddle.batch(
                        cluster_reader_cluster(cluster_test_file, node_id),
                        32))
                print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics,
                    result.metrics)

    cost = paddle.layer.classification_cost(input=predictword, label=nextword)
    parameters = paddle.parameters.create(cost)
    adagrad = paddle.optimizer.AdaGrad(
        learning_rate=3e-3,
        regularization=paddle.optimizer.L2Regularization(8e-4))
    trainer = paddle.trainer.SGD(cost,
                                 parameters,
                                 adagrad,
                                 is_local=not cluster_train)
    trainer.train(paddle.batch(
        cluster_reader_cluster(cluster_train_file, node_id), 32),
                  num_passes=30,
                  event_handler=event_handler)
Example #26
0
def infer(data_path, model_path, word_dict_path, batch_size, label_dict_path):
    def _infer_a_batch(inferer, test_batch, ids_2_word, ids_2_label):
        probs = inferer.infer(input=test_batch, field=["value"])
        assert len(probs) == len(test_batch)
        for word_ids, prob in zip(test_batch, probs):
            sent_ids = []
            for sent in word_ids[0]:
                sent_ids.extend(sent)
            word_text = " ".join([ids_2_word[id] for id in sent_ids])
            print("%s\t%s\t%s" % (ids_2_label[prob.argmax()],
                                  " ".join(["{:0.4f}".format(p)
                                            for p in prob]), word_text))

    assert os.path.exists(model_path), "The trained model does not exist."
    logger.info("Begin to predict...")
    use_default_data = (data_path is None)

    if use_default_data:
        word_dict = reader.imdb_word_dict()
        word_reverse_dict = dict((value, key)
                                 for key, value in word_dict.iteritems())

        # The reversed label dict of the imdb dataset 
        label_reverse_dict = {0: "positive", 1: "negative"}
        test_reader = reader.imdb_test(word_dict)
        class_num = 2
    else:
        assert os.path.exists(
            word_dict_path), "The word dictionary file does not exist"
        assert os.path.exists(
            label_dict_path), "The label dictionary file does not exist"

        word_dict = load_dict(word_dict_path)
        word_reverse_dict = dict((value, key)
                                 for key, value in word_dict.iteritems())
        label_reverse_dict = load_reverse_dict(label_dict_path)
        class_num = len(label_reverse_dict)
        test_reader = reader.infer_reader(data_path, word_dict)()

    dict_dim = len(word_dict)

    # initialize PaddlePaddle.
    paddle.init(use_gpu=False, trainer_count=1)

    prob_layer = nested_net(dict_dim, class_num, is_infer=True)

    # load the trained models.
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(model_path, "r"))
    inferer = paddle.inference.Inference(
        output_layer=prob_layer, parameters=parameters)

    test_batch = []
    for idx, item in enumerate(test_reader):
        test_batch.append([item[0]])
        if len(test_batch) == batch_size:
            _infer_a_batch(inferer, test_batch, word_reverse_dict,
                           label_reverse_dict)
            test_batch = []

    if len(test_batch):
        _infer_a_batch(inferer, test_batch, word_reverse_dict,
                       label_reverse_dict)
        test_batch = []
Example #27
0
def main():
    paddle.init(use_gpu=False)
    movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
    uid = paddle.layer.data(
        name='user_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_user_id() + 1))
    usr_emb = paddle.layer.embedding(input=uid, size=32)

    usr_gender_id = paddle.layer.data(
        name='gender_id', type=paddle.data_type.integer_value(2))
    usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)

    usr_age_id = paddle.layer.data(
        name='age_id',
        type=paddle.data_type.integer_value(
            len(paddle.dataset.movielens.age_table)))
    usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)

    usr_job_id = paddle.layer.data(
        name='job_id',
        type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id(
        ) + 1))

    usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)

    usr_combined_features = paddle.layer.fc(
        input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb],
        size=200,
        act=paddle.activation.Tanh())

    mov_id = paddle.layer.data(
        name='movie_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_movie_id() + 1))
    mov_emb = paddle.layer.embedding(input=mov_id, size=32)

    mov_categories = paddle.layer.data(
        name='category_id',
        type=paddle.data_type.sparse_binary_vector(
            len(paddle.dataset.movielens.movie_categories())))

    mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)

    mov_title_id = paddle.layer.data(
        name='movie_title',
        type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
    mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
    mov_title_conv = paddle.networks.sequence_conv_pool(
        input=mov_title_emb, hidden_size=32, context_len=3)

    mov_combined_features = paddle.layer.fc(
        input=[mov_emb, mov_categories_hidden, mov_title_conv],
        size=200,
        act=paddle.activation.Tanh())

    inference = paddle.layer.cos_sim(
        a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
    cost = paddle.layer.mse_cost(
        input=inference,
        label=paddle.layer.data(
            name='score', type=paddle.data_type.dense_vector(1)))

    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=paddle.optimizer.Adam(
                                     learning_rate=1e-4))
    feeding = {
        'user_id': 0,
        'gender_id': 1,
        'age_id': 2,
        'job_id': 3,
        'movie_id': 4,
        'category_id': 5,
        'movie_title': 6,
        'score': 7
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.2f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.movielens.train(), buf_size=8192),
            batch_size=256),
        event_handler=event_handler,
        feeding=feeding,
        num_passes=1)

    user_id = 234
    movie_id = 345

    user = paddle.dataset.movielens.user_info()[user_id]
    movie = paddle.dataset.movielens.movie_info()[movie_id]

    feature = user.value() + movie.value()

    def reader():
        yield feature

    infer_dict = copy.copy(feeding)
    del infer_dict['score']

    prediction = paddle.infer(
        output=inference,
        parameters=parameters,
        reader=paddle.batch(
            reader, batch_size=32),
        feeding=infer_dict)
    print(prediction + 5) / 2
Example #28
0
def train():
    """
    model train
    """
    # init
    use_gpu_flag = os.getenv("PADDLE_USE_GPU", "0")
    print("use_gpu_flag", use_gpu_flag)
    trainer_id_str = os.getenv("PADDLE_TRAINER_ID", "0")
    paddle.init(
        use_gpu=use_gpu_flag,
        trainer_count=int(os.getenv("PADDLE_TRAINER_COUNT", "1")),
        port=int(os.getenv("PADDLE_PORT", "7164")),
        ports_num=int(os.getenv("PADDLE_PORTS_NUM", "1")),
        ports_num_for_sparse=int(os.getenv("PADDLE_PORTS_NUM_FOR_SPARSE",
                                           "1")),
        num_gradient_servers=int(os.getenv("PADDLE_NUM_GRADIENT_SERVERS",
                                           "1")),
        trainer_id=int(trainer_id_str),
        pservers=os.getenv("PADDLE_PSERVERS", "127.0.0.1"))
    # network config
    x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
    y_predict = paddle.layer.fc(input=x,
                                size=1,
                                act=paddle.activation.Linear())
    y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
    cost = paddle.layer.square_error_cost(input=y_predict, label=y)
    # Save the inference topology to protobuf.
    inference_topology = paddle.topology.Topology(layers=y_predict)
    with open("./output/inference_topology.pkl", 'wb') as f:
        inference_topology.serialize_for_inference(f)
    # create parameters
    parameters = paddle.parameters.create(cost)
    # create optimizer
    optimizer = paddle.optimizer.Momentum(momentum=0)
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 is_local=False)
    feeding = {'x': 0, 'y': 1}
    #create reader
    train_reader = paddle.batch(paddle.reader.shuffle(
        cluster_data_reader(cluster_train_dir), buf_size=500),
                                batch_size=2)

    # event_handler to print training and testing info
    def event_handler(event):
        """
        handle paddle event
        """
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f" % (
                    event.pass_id, event.batch_id, event.cost)
        if isinstance(event, paddle.event.EndPass):
            if event.pass_id % 10 == 0:
                filename = './output/model/params_pass_%d_%s.tar' % (
                    event.pass_id, trainer_id_str)
                with open(filename, "w") as f:
                    trainer.save_parameter_to_tar(f)
            test_reader = paddle.batch(paddle.reader.shuffle(
                cluster_data_reader(cluster_test_dir), buf_size=500),
                                       batch_size=2)
            result = trainer.test(reader=test_reader, feeding=feeding)
            print "Test %d, Cost %f" % (event.pass_id, result.cost)

    # training
    trainer.train(reader=train_reader,
                  feeding=feeding,
                  event_handler=event_handler,
                  num_passes=30)
Example #29
0
#encoding=utf8

import paddle.v2 as paddle
import paddle.v2.dataset.uci_housing as uci_housing

# 模型初始化
paddle.init(use_gpu=False, trainer_count=1)


# 数据
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
# cost = paddle.layer.mse_cost(input=y_predict, label=y)
cost = paddle.layer.square_error_cost(input=y_predict, label=y)

# 参数,优化器,训练器
parameters = paddle.parameters.create(cost)
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer)


Example #30
0
def main():
    # parse the argument
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'model',
        help='The model for image classification',
        choices=['alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet'])
    args = parser.parse_args()

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=7)

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
    learning_rate = 0.01
    if args.model == 'alexnet':
        out = alexnet.alexnet(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg13':
        out = vgg.vgg13(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg16':
        out = vgg.vgg16(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg19':
        out = vgg.vgg19(image, class_dim=CLASS_DIM)
    elif args.model == 'resnet':
        out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
        learning_rate = 0.1
    elif args.model == 'googlenet':
        out, out1, out2 = googlenet.googlenet(image, class_dim=CLASS_DIM)
        loss1 = paddle.layer.cross_entropy_cost(
            input=out1, label=lbl, coeff=0.3)
        paddle.evaluator.classification_error(input=out1, label=lbl)
        loss2 = paddle.layer.cross_entropy_cost(
            input=out2, label=lbl, coeff=0.3)
        paddle.evaluator.classification_error(input=out2, label=lbl)
        extra_layers = [loss1, loss2]

    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp", )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            flowers.train(),
            # To use other data, replace the above line with:
            # reader.train_reader('train.list'),
            buf_size=1000),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        flowers.valid(),
        # To use other data, replace the above line with:
        # reader.test_reader('val.list'),
        batch_size=BATCH_SIZE)

    # Create trainer
    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=optimizer,
        extra_layers=extra_layers)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
        if isinstance(event, paddle.event.EndPass):
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                trainer.save_parameter_to_tar(f)

            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    trainer.train(
        reader=train_reader, num_passes=200, event_handler=event_handler)
Example #31
0
    lstm_last = paddle.layer.pooling(
        input=inputs[1], pooling_type=paddle.pooling.Max())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost


if __name__ == '__main__':
    # init
    paddle.init(use_gpu=False)

    #data
    print 'load dictionary...'
    word_dict = paddle.dataset.imdb.word_dict()
    dict_dim = len(word_dict)
    class_dim = 2
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=100)
    test_reader = paddle.batch(
        lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)

    feeding = {'word': 0, 'label': 1}
Example #32
0
def main():
    # parse the argument
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'model',
        help='The model for image classification',
        choices=['alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet'])
    args = parser.parse_args()

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=7)

    image = paddle.layer.data(name="image",
                              type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(name="label",
                            type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
    learning_rate = 0.01
    if args.model == 'alexnet':
        out = alexnet.alexnet(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg13':
        out = vgg.vgg13(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg16':
        out = vgg.vgg16(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg19':
        out = vgg.vgg19(image, class_dim=CLASS_DIM)
    elif args.model == 'resnet':
        out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
        learning_rate = 0.1
    elif args.model == 'googlenet':
        out, out1, out2 = googlenet.googlenet(image, class_dim=CLASS_DIM)
        loss1 = paddle.layer.cross_entropy_cost(input=out1,
                                                label=lbl,
                                                coeff=0.3)
        paddle.evaluator.classification_error(input=out1, label=lbl)
        loss2 = paddle.layer.cross_entropy_cost(input=out2,
                                                label=lbl,
                                                coeff=0.3)
        paddle.evaluator.classification_error(input=out2, label=lbl)
        extra_layers = [loss1, loss2]

    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp",
    )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            flowers.train(),
            # To use other data, replace the above line with:
            # reader.train_reader('train.list'),
            buf_size=1000),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        flowers.valid(),
        # To use other data, replace the above line with:
        # reader.test_reader('val.list'),
        batch_size=BATCH_SIZE)

    # Create trainer
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 extra_layers=extra_layers)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
        if isinstance(event, paddle.event.EndPass):
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                trainer.save_parameter_to_tar(f)

            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    trainer.train(reader=train_reader,
                  num_passes=200,
                  event_handler=event_handler)