Example #1
0
    def test_1(self):
        input = np.random.random([3, 4, 5, 6]).astype("float64")
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
        minus_3 = fluid.layers.fill_constant([1], "int32", -3)
        starts = fluid.layers.data(
            name='starts', shape=[3], dtype='int32', append_batch_size=False)
        ends = fluid.layers.data(
            name='ends', shape=[3], dtype='int32', append_batch_size=False)
        strides = fluid.layers.data(
            name='strides', shape=[3], dtype='int32', append_batch_size=False)

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
            dtype="float64")
        out_1 = paddle.strided_slice(
            x,
            axes=[0, 1, 2],
            starts=[-3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1])
        out_2 = paddle.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1])
        out_3 = paddle.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, minus_1],
            strides=[1, 1, 1])
        out_4 = paddle.strided_slice(
            x, axes=[0, 1, 2], starts=starts, ends=ends, strides=strides)

        out_5 = x[-3:3, 0:100:2, -1:2:-1]
        out_6 = x[minus_3:3:1, 0:100:2, :, minus_1:2:minus_1]
        out_7 = x[minus_1, 0:100:2, :, -1:2:-1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
                'ends': np.array([3, 2147483648, -1]).astype("int64"),
                'strides': np.array([1, 1, 1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100:2, -1:2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100:2, :, -1:2:-1])
        assert np.array_equal(res_7, input[-1, 0:100:2, :, -1:2:-1])
Example #2
0
def slice_select_prim2orig(op, x):
    return paddle.strided_slice(
        x,
        axes=op.attr('axis'),
        starts=op.attr('starts'),
        ends=op.attr('ends'),
        strides=op.attr('strides'))
Example #3
0
 def test_dygraph_op(self):
     x = paddle.zeros(shape=[3, 4, 5, 6], dtype="float32")
     axes = [1, 2, 3]
     starts = [-3, 0, 2]
     ends = [3, 2, 4]
     strides_1 = [1, 1, 1]
     sliced_1 = paddle.strided_slice(
         x, axes=axes, starts=starts, ends=ends, strides=strides_1)
     assert sliced_1.shape == (3, 2, 2, 2)
Example #4
0
    def test_compare_paddle_strided_slice_with_numpy(self):
        paddle.disable_static()
        array = np.arange(5)
        pt = paddle.to_tensor(array)

        s1 = 3
        e1 = 1
        stride1 = -2
        sl = paddle.strided_slice(
            pt, axes=[0, ], starts=[s1, ], ends=[e1, ], strides=[stride1, ])

        self.assertTrue(array[s1:e1:stride1], sl)

        array = np.arange(6 * 6).reshape((6, 6))
        pt = paddle.to_tensor(array)
        s2 = [8, -1]
        e2 = [1, -5]
        stride2 = [-2, -3]
        sl = paddle.strided_slice(
            pt, axes=[0, 1], starts=s2, ends=e2, strides=stride2)

        self.assertTrue(
            np.array_equal(sl.numpy(), array[s2[0]:e2[0]:stride2[0], s2[1]:e2[
                1]:stride2[1]]))

        array = np.arange(6 * 7 * 8).reshape((6, 7, 8))
        pt = paddle.to_tensor(array)
        s2 = [7, -1]
        e2 = [2, -5]
        stride2 = [-2, -3]
        sl = paddle.strided_slice(
            pt, axes=[0, 2], starts=s2, ends=e2, strides=stride2)

        array_slice = array[s2[0]:e2[0]:stride2[0], ::, s2[1]:e2[1]:stride2[1]]
        self.assertTrue(
            np.array_equal(sl.numpy(), array_slice),
            msg="paddle.strided_slice:\n {} \n numpy slice:\n{}".format(
                sl.numpy(), array_slice))
 def forward(self, inputs):
     """
     forward
     """
     axes = self.config['axes']
     starts = self.config['starts']
     ends = self.config['ends']
     # strides = self.config['strides']
     # strides = [1, paddle.to_tensor(1).astype('int32'), 1]
     # strides = [1, paddle.to_tensor(1, dtype='int32'), 1]
     strides = [1, paddle.to_tensor(np.array(1).astype("int32")), 1]
     x = paddle.strided_slice(inputs,
                              axes=axes,
                              starts=starts,
                              ends=ends,
                              strides=strides)
     return x
 def forward(self, inputs):
     """
     forward
     """
     axes = self.config['axes']
     starts = self.config['starts']
     ends = self.config['ends']
     strides = self.config['strides']
     if self.config['isStartsTensor']:
         starts = paddle.to_tensor(np.array(starts).astype('int32'))
     if self.config['isEndsTensor']:
         ends = paddle.to_tensor(np.array(ends).astype('int32'))
     if self.config['isStridesTensor']:
         strides = paddle.to_tensor(np.array(strides).astype('int32'))
     x = paddle.strided_slice(inputs,
                              axes=axes,
                              starts=starts,
                              ends=ends,
                              strides=strides)
     return x
Example #7
0
    def forward(self):
        input = self.input('Input', 0)
        weight = self.input('Filter', 0)
        mask = self.input('Mask', 0)
        offset = self.input('Offset', 0)

        input = layers.pad2d(input, self.padding)
        input_shape = paddle.shape(input)
        if self.padded_x_h < 0 or self.padded_x_w < 0:
            self.padded_x_h = input_shape[2]
            self.padded_x_w = input_shape[3]

        offset_x = paddle.strided_slice(offset,
                                        axes=[1],
                                        starts=[0],
                                        ends=[self.offset_channel],
                                        strides=[2])
        offset_y = paddle.strided_slice(offset,
                                        axes=[1],
                                        starts=[1],
                                        ends=[self.offset_channel],
                                        strides=[2])
        offset = paddle.concat([offset_x, offset_y], axis=1)
        offset_shape = paddle.shape(offset)
        offset_h = offset_shape[2]
        offset_w = offset_shape[3]

        coordinate = self.get_offset_coordinate(offset, 'float32',
                                                offset_shape)

        coordinate = coordinate.transpose((0, 2, 3, 1))
        coord_lt, coord_rb, coord_lb, coord_rt = self.get_bilinear_corner_coordinate(
            coordinate, self.padded_x_h, self.padded_x_w)

        # clip coordinate
        coordinate = paddle.concat([
            paddle.clip(coordinate[:, :, :, :self.N], 0, self.padded_x_h - 1),
            paddle.clip(coordinate[:, :, :, self.N:], 0, self.padded_x_w - 1)
        ],
                                   axis=-1)

        cof_lt, cof_rb, cof_lb, cof_rt = self.get_bilinear_coefficient(
            coord_lt, coord_rb, coord_lb, coord_rt, coordinate)

        feature_lt = self.get_feature_by_coordinate(input, coord_lt, offset_h,
                                                    offset_w, self.padded_x_w)
        feature_rb = self.get_feature_by_coordinate(input, coord_rb, offset_h,
                                                    offset_w, self.padded_x_w)
        feature_lb = self.get_feature_by_coordinate(input, coord_lb, offset_h,
                                                    offset_w, self.padded_x_w)
        feature_rt = self.get_feature_by_coordinate(input, coord_rt, offset_h,
                                                    offset_w, self.padded_x_w)

        feature_after_deformation = paddle.unsqueeze(cof_lt, 1) * feature_lt + \
                   paddle.unsqueeze(cof_rb, 1) * feature_rb + \
                   paddle.unsqueeze(cof_lb, 1) * feature_lb + \
                   paddle.unsqueeze(cof_rt, 1) * feature_rt

        # modulation
        if mask is not None:
            mask = paddle.transpose(mask, (0, 2, 3, 1))
            mask = paddle.unsqueeze(mask, 1)
            mask = paddle.tile(mask, [1, self.in_channel, 1, 1, 1])
            feature_after_deformation *= mask

        feature_after_deformation = self.reshape_feature(
            feature_after_deformation, offset_h, offset_w)

        out = paddle.nn.functional.conv2d(feature_after_deformation,
                                          weight,
                                          stride=self.kernel_size,
                                          groups=self.groups)

        return {'Output': [out]}