def __init__(self, num_classes, in_channels, align_corners, data_format='NCHW'): super(Decoder, self).__init__() self.data_format = data_format self.conv_bn_relu1 = layers.ConvBNReLU(in_channels=in_channels, out_channels=48, kernel_size=1, data_format=data_format) self.conv_bn_relu2 = layers.SeparableConvBNReLU( in_channels=304, out_channels=256, kernel_size=3, padding=1, data_format=data_format) self.conv_bn_relu3 = layers.SeparableConvBNReLU( in_channels=256, out_channels=256, kernel_size=3, padding=1, data_format=data_format) self.conv = nn.Conv2D(in_channels=256, out_channels=num_classes, kernel_size=1, data_format=data_format) self.align_corners = align_corners
def __init__(self, dw_channels1=32, dw_channels2=48, out_channels=64): super(LearningToDownsample, self).__init__() self.conv_bn_relu = layers.ConvBNReLU( in_channels=3, out_channels=dw_channels1, kernel_size=3, stride=2) self.dsconv_bn_relu1 = layers.SeparableConvBNReLU( in_channels=dw_channels1, out_channels=dw_channels2, kernel_size=3, stride=2, padding=1) self.dsconv_bn_relu2 = layers.SeparableConvBNReLU( in_channels=dw_channels2, out_channels=out_channels, kernel_size=3, stride=2, padding=1)
def __init__(self, num_classes, in_channels): super(Decoder, self).__init__() self.conv_bn_relu1 = layers.ConvBNReLU(in_channels=in_channels, out_channels=48, kernel_size=1) self.conv_bn_relu2 = layers.SeparableConvBNReLU(in_channels=304, out_channels=256, kernel_size=3, padding=1) self.conv_bn_relu3 = layers.SeparableConvBNReLU(in_channels=256, out_channels=256, kernel_size=3, padding=1) self.conv = nn.Conv2D(in_channels=256, out_channels=num_classes, kernel_size=1)
def __init__(self, input_channels, num_classes): super().__init__() self.dsconv1 = layers.SeparableConvBNReLU(in_channels=input_channels, out_channels=input_channels, kernel_size=3, padding=1) self.dsconv2 = layers.SeparableConvBNReLU(in_channels=input_channels, out_channels=input_channels, kernel_size=3, padding=1) self.conv = nn.Conv2D(in_channels=input_channels, out_channels=num_classes, kernel_size=1) self.dropout = nn.Dropout(p=0.1) # dropout_prob