def test_sensitivity(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 1, 28, 28]) label = fluid.data(name="label", shape=[None, 1], dtype="int64") conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") out = fluid.layers.fc(conv6, size=10, act='softmax') acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) eval_program = main_program.clone(for_test=True) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) val_reader = paddle.fluid.io.batch(paddle.dataset.mnist.test(), batch_size=128) def eval_func(program): feeder = fluid.DataFeeder(feed_list=['image', 'label'], place=place, program=program) acc_set = [] for data in val_reader(): acc_np = exe.run(program=program, feed=feeder.feed(data), fetch_list=[acc_top1]) acc_set.append(float(acc_np[0])) acc_val_mean = numpy.array(acc_set).mean() print("acc_val_mean: {}".format(acc_val_mean)) return acc_val_mean sensitivity(eval_program, place, ["conv4_weights"], eval_func, "./sensitivities_file_0", pruned_ratios=[0.1, 0.2]) sensitivity(eval_program, place, ["conv4_weights"], eval_func, "./sensitivities_file_1", pruned_ratios=[0.3, 0.4]) sens_0 = load_sensitivities('./sensitivities_file_0') sens_1 = load_sensitivities('./sensitivities_file_1') sens = merge_sensitive([sens_0, sens_1]) origin_sens = sensitivity(eval_program, place, ["conv4_weights"], eval_func, "./sensitivities_file_1", pruned_ratios=[0.1, 0.2, 0.3, 0.4]) self.assertTrue(sens == origin_sens)
def sensitivity(program, place, param_names, eval_func, sensitivities_file=None, pruned_ratios=None): scope = fluid.global_scope() graph = GraphWrapper(program) sensitivities = load_sensitivities(sensitivities_file) if pruned_ratios is None: pruned_ratios = np.arange(0.1, 1, step=0.1) total_evaluate_iters = 0 for name in param_names: if name not in sensitivities: sensitivities[name] = {} total_evaluate_iters += len(list(pruned_ratios)) else: total_evaluate_iters += (len(list(pruned_ratios)) - len(sensitivities[name])) eta = '-' start_time = time.time() baseline = eval_func(graph.program) cost = time.time() - start_time eta = cost * (total_evaluate_iters - 1) current_iter = 1 for name in sensitivities: for ratio in pruned_ratios: if ratio in sensitivities[name]: logging.debug('{}, {} has computed.'.format(name, ratio)) continue progress = float(current_iter) / total_evaluate_iters progress = "%.2f%%" % (progress * 100) logging.info( "Total evaluate iters={}, current={}, progress={}, eta={}". format( total_evaluate_iters, current_iter, progress, seconds_to_hms( int(cost * (total_evaluate_iters - current_iter)))), use_color=True) current_iter += 1 pruner = Pruner() logging.info("sensitive - param: {}; ratios: {}".format( name, ratio)) pruned_program, param_backup, _ = pruner.prune( program=graph.program, scope=scope, params=[name], ratios=[ratio], place=place, lazy=True, only_graph=False, param_backup=True) pruned_metric = eval_func(pruned_program) loss = (baseline - pruned_metric) / baseline logging.info("pruned param: {}; {}; loss={}".format( name, ratio, loss)) sensitivities[name][ratio] = loss with open(sensitivities_file, 'wb') as f: pickle.dump(sensitivities, f) for param_name in param_backup.keys(): param_t = scope.find_var(param_name).get_tensor() param_t.set(param_backup[param_name], place) return sensitivities
def main(): config = program.load_config(FLAGS.config) program.merge_config(FLAGS.opt) logger.info(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] program.check_gpu(use_gpu) alg = config['Global']['algorithm'] assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE'] if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']: config['Global']['char_ops'] = CharacterOps(config['Global']) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() startup_program = fluid.Program() train_program = fluid.Program() train_build_outputs = program.build(config, train_program, startup_program, mode='train') train_loader = train_build_outputs[0] train_fetch_name_list = train_build_outputs[1] train_fetch_varname_list = train_build_outputs[2] train_opt_loss_name = train_build_outputs[3] eval_program = fluid.Program() eval_build_outputs = program.build(config, eval_program, startup_program, mode='eval') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) train_reader = reader_main(config=config, mode="train") train_loader.set_sample_list_generator(train_reader, places=place) eval_reader = reader_main(config=config, mode="eval") exe = fluid.Executor(place) exe.run(startup_program) # compile program for multi-devices init_model(config, train_program, exe) sen = load_sensitivities("sensitivities_0.data") for i in skip_list: if i in sen.keys(): sen.pop(i) back_bone_list = ['conv' + str(x) for x in range(1, 5)] for i in back_bone_list: for key in list(sen.keys()): if i + '_' in key: sen.pop(key) ratios = get_ratios_by_loss(sen, 0.03) logger.info("FLOPs before pruning: {}".format(flops(eval_program))) pruner = Pruner(criterion='geometry_median') print("ratios: {}".format(ratios)) pruned_val_program, _, _ = pruner.prune(eval_program, fluid.global_scope(), params=ratios.keys(), ratios=ratios.values(), place=place, only_graph=True) pruned_program, _, _ = pruner.prune(train_program, fluid.global_scope(), params=ratios.keys(), ratios=ratios.values(), place=place) logger.info("FLOPs after pruning: {}".format(flops(pruned_val_program))) train_compile_program = program.create_multi_devices_program( pruned_program, train_opt_loss_name) train_info_dict = {'compile_program':train_compile_program,\ 'train_program':pruned_program,\ 'reader':train_loader,\ 'fetch_name_list':train_fetch_name_list,\ 'fetch_varname_list':train_fetch_varname_list} eval_info_dict = {'program':pruned_val_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} if alg in ['EAST', 'DB']: program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict, is_slim="prune") else: program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)