Example #1
0
def save_prune_checkpoint(exe, program, ckpt_name):
    """
    Save checkpoint for evaluation or resume training
    """
    ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
    print("Save model checkpoint to {}".format(ckpt_dir))
    if not os.path.isdir(ckpt_dir):
        os.makedirs(ckpt_dir)

    save_model(exe, program, ckpt_dir)

    return ckpt_dir
    def test_prune(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
            feature = fluid.layers.reshape(conv6, [-1, 128, 16])
            predict = fluid.layers.fc(input=feature, size=10, act='softmax')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            print(label.shape)
            print(predict.shape)
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(cost)
            adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
            adam_optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        scope = fluid.global_scope()
        exe.run(startup_program, scope=scope)
        criterion = 'bn_scale'
        pruner = Pruner(criterion)
        main_program, _, _ = pruner.prune(train_program,
                                          scope,
                                          params=["conv4_weights"],
                                          ratios=[0.5],
                                          place=place,
                                          lazy=False,
                                          only_graph=False,
                                          param_backup=None,
                                          param_shape_backup=None)

        x = numpy.random.random(size=(10, 3, 16, 16)).astype('float32')
        label = numpy.random.random(size=(10, 1)).astype('int64')
        loss_data, = exe.run(train_program,
                             feed={
                                 "image": x,
                                 "label": label
                             },
                             fetch_list=[cost.name])

        save_model(exe, main_program, 'model_file')
        pruned_program = fluid.Program()
        pruned_startup_program = fluid.Program()
        with fluid.program_guard(pruned_program, pruned_startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
        pruned_test_program = pruned_program.clone(for_test=True)
        exe.run(pruned_startup_program)
        load_model(exe, pruned_program, 'model_file')
        load_model(exe, pruned_test_program, 'model_file')
        shapes = {
            "conv1_weights": (4, 3, 3, 3),
            "conv2_weights": (4, 4, 3, 3),
            "conv3_weights": (8, 4, 3, 3),
            "conv4_weights": (4, 8, 3, 3),
            "conv5_weights": (8, 4, 3, 3),
            "conv6_weights": (8, 8, 3, 3)
        }

        for param in pruned_program.global_block().all_parameters():
            if "weights" in param.name:
                print("param: {}; param shape: {}".format(
                    param.name, param.shape))
                self.assertTrue(param.shape == shapes[param.name])
        for param in pruned_test_program.global_block().all_parameters():
            if "weights" in param.name:
                print("param: {}; param shape: {}".format(
                    param.name, param.shape))
                self.assertTrue(param.shape == shapes[param.name])
Example #3
0
def compress(args):
    train_reader = None
    test_reader = None
    if args.data == "mnist":
        import paddle.dataset.mnist as reader
        train_reader = reader.train()
        val_reader = reader.test()
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_reader = reader.train()
        val_reader = reader.val()
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))
    image_shape = [int(m) for m in image_shape.split(",")]
    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    cost = fluid.layers.cross_entropy(input=out, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
    val_program = fluid.default_main_program().clone(for_test=True)
    opt = create_optimizer(args)
    opt.minimize(avg_cost)
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if args.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(args.pretrained_model,
                                               var.name))

        _logger.info("Load pretrained model from {}".format(
            args.pretrained_model))
        fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)

    val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
    train_reader = paddle.fluid.io.batch(train_reader,
                                         batch_size=args.batch_size,
                                         drop_last=True)

    train_feeder = feeder = fluid.DataFeeder([image, label], place)
    val_feeder = feeder = fluid.DataFeeder([image, label],
                                           place,
                                           program=val_program)

    def test(epoch, program):
        batch_id = 0
        acc_top1_ns = []
        acc_top5_ns = []
        for data in val_reader():
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
                program,
                feed=train_feeder.feed(data),
                fetch_list=[acc_top1.name, acc_top5.name])
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
                    "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}"
                    .format(epoch, batch_id, np.mean(acc_top1_n),
                            np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))
            batch_id += 1

        _logger.info(
            "Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(
                epoch, np.mean(np.array(acc_top1_ns)),
                np.mean(np.array(acc_top5_ns))))

    def train(epoch, program):

        build_strategy = fluid.BuildStrategy()
        exec_strategy = fluid.ExecutionStrategy()
        train_program = fluid.compiler.CompiledProgram(
            program).with_data_parallel(loss_name=avg_cost.name,
                                        build_strategy=build_strategy,
                                        exec_strategy=exec_strategy)

        batch_id = 0
        for data in train_reader():
            start_time = time.time()
            loss_n, acc_top1_n, acc_top5_n = exe.run(
                train_program,
                feed=train_feeder.feed(data),
                fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
            end_time = time.time()
            loss_n = np.mean(loss_n)
            acc_top1_n = np.mean(acc_top1_n)
            acc_top5_n = np.mean(acc_top5_n)
            if batch_id % args.log_period == 0:
                _logger.info(
                    "epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {}; time: {}"
                    .format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n,
                            end_time - start_time))
            batch_id += 1

    test(0, val_program)

    params = get_pruned_params(args, fluid.default_main_program())
    _logger.info("FLOPs before pruning: {}".format(
        flops(fluid.default_main_program())))
    pruner = Pruner(args.criterion)
    pruned_val_program, _, _ = pruner.prune(val_program,
                                            fluid.global_scope(),
                                            params=params,
                                            ratios=[args.pruned_ratio] *
                                            len(params),
                                            place=place,
                                            only_graph=True)

    pruned_program, _, _ = pruner.prune(fluid.default_main_program(),
                                        fluid.global_scope(),
                                        params=params,
                                        ratios=[args.pruned_ratio] *
                                        len(params),
                                        place=place)
    _logger.info("FLOPs after pruning: {}".format(flops(pruned_program)))
    for i in range(args.num_epochs):
        train(i, pruned_program)
        if i % args.test_period == 0:
            test(i, pruned_val_program)
            save_model(exe, pruned_val_program,
                       os.path.join(args.model_path, str(i)))
        if args.save_inference:
            infer_model_path = os.path.join(args.model_path, "infer_models",
                                            str(i))
            fluid.io.save_inference_model(infer_model_path, ["image"], [out],
                                          exe, pruned_val_program)
            _logger.info(
                "Saved inference model into [{}]".format(infer_model_path))
Example #4
0
def compress(args):
    train_reader = None
    test_reader = None
    if args.data == "mnist":
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.MNIST(mode='train',
                                                     backend="cv2",
                                                     transform=transform)
        val_dataset = paddle.vision.datasets.MNIST(mode='test',
                                                   backend="cv2",
                                                   transform=transform)
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_dataset = reader.ImageNetDataset(mode='train')
        val_dataset = reader.ImageNetDataset(mode='val')
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))
    image_shape = [int(m) for m in image_shape.split(",")]
    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
    place = places[0]
    exe = paddle.static.Executor(place)
    image = paddle.static.data(name='image',
                               shape=[None] + image_shape,
                               dtype='float32')
    label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
    batch_size_per_card = int(args.batch_size / len(places))
    train_loader = paddle.io.DataLoader(train_dataset,
                                        places=places,
                                        feed_list=[image, label],
                                        drop_last=True,
                                        batch_size=batch_size_per_card,
                                        shuffle=True,
                                        return_list=False,
                                        use_shared_memory=True,
                                        num_workers=16)
    valid_loader = paddle.io.DataLoader(val_dataset,
                                        places=place,
                                        feed_list=[image, label],
                                        drop_last=False,
                                        return_list=False,
                                        use_shared_memory=True,
                                        batch_size=batch_size_per_card,
                                        shuffle=False)
    step_per_epoch = int(np.ceil(len(train_dataset) * 1. / args.batch_size))

    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
    avg_cost = paddle.mean(x=cost)
    acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
    acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
    val_program = paddle.static.default_main_program().clone(for_test=True)
    opt, learning_rate = create_optimizer(args, step_per_epoch)
    opt.minimize(avg_cost)

    exe.run(paddle.static.default_startup_program())

    if args.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(args.pretrained_model,
                                               var.name))

        _logger.info("Load pretrained model from {}".format(
            args.pretrained_model))
        paddle.static.load(paddle.static.default_main_program(),
                           args.pretrained_model, exe)

    def test(epoch, program):
        acc_top1_ns = []
        acc_top5_ns = []
        for batch_id, data in enumerate(valid_loader):
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
                program, feed=data, fetch_list=[acc_top1.name, acc_top5.name])
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
                    "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}"
                    .format(epoch, batch_id, np.mean(acc_top1_n),
                            np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))

        _logger.info(
            "Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(
                epoch, np.mean(np.array(acc_top1_ns)),
                np.mean(np.array(acc_top5_ns))))

    def train(epoch, program):
        for batch_id, data in enumerate(train_loader):
            start_time = time.time()
            loss_n, acc_top1_n, acc_top5_n = exe.run(
                train_program,
                feed=data,
                fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
            end_time = time.time()
            loss_n = np.mean(loss_n)
            acc_top1_n = np.mean(acc_top1_n)
            acc_top5_n = np.mean(acc_top5_n)
            if batch_id % args.log_period == 0:
                _logger.info(
                    "epoch[{}]-batch[{}] lr: {:.6f} - loss: {}; acc_top1: {}; acc_top5: {}; time: {}"
                    .format(epoch, batch_id, learning_rate.get_lr(), loss_n,
                            acc_top1_n, acc_top5_n, end_time - start_time))
            learning_rate.step()
            batch_id += 1

    test(0, val_program)
    params = get_pruned_params(args, paddle.static.default_main_program())
    _logger.info("FLOPs before pruning: {}".format(
        flops(paddle.static.default_main_program())))
    pruner = Pruner(args.criterion)
    pruned_val_program, _, _ = pruner.prune(val_program,
                                            paddle.static.global_scope(),
                                            params=params,
                                            ratios=[args.pruned_ratio] *
                                            len(params),
                                            place=place,
                                            only_graph=True)

    pruned_program, _, _ = pruner.prune(paddle.static.default_main_program(),
                                        paddle.static.global_scope(),
                                        params=params,
                                        ratios=[args.pruned_ratio] *
                                        len(params),
                                        place=place)
    _logger.info("FLOPs after pruning: {}".format(flops(pruned_program)))

    build_strategy = paddle.static.BuildStrategy()
    exec_strategy = paddle.static.ExecutionStrategy()
    train_program = paddle.static.CompiledProgram(
        pruned_program).with_data_parallel(loss_name=avg_cost.name,
                                           build_strategy=build_strategy,
                                           exec_strategy=exec_strategy)

    for i in range(args.num_epochs):
        train(i, train_program)
        if (i + 1) % args.test_period == 0:
            test(i, pruned_val_program)
            save_model(exe, pruned_val_program,
                       os.path.join(args.model_path, str(i)))
        if args.save_inference:
            infer_model_path = os.path.join(args.model_path, "infer_models",
                                            str(i))
            paddle.static.save_inference_model(infer_model_path, [image],
                                               [out],
                                               exe,
                                               program=pruned_val_program)
            _logger.info(
                "Saved inference model into [{}]".format(infer_model_path))
Example #5
0
    def test_prune(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        scope = fluid.global_scope()
        exe.run(startup_program, scope=scope)
        criterion = 'bn_scale'
        pruner = Pruner(criterion)
        main_program, _, _ = pruner.prune(train_program,
                                          scope,
                                          params=["conv4_weights"],
                                          ratios=[0.5],
                                          place=place,
                                          lazy=False,
                                          only_graph=False,
                                          param_backup=None,
                                          param_shape_backup=None)

        x = numpy.random.random(size=(10, 3, 16, 16)).astype('float32')
        loss_data, = exe.run(train_program,
                             feed={"image": x},
                             fetch_list=[conv6.name])

        save_model(exe, main_program, 'model_file')
        pruned_program = fluid.Program()
        pruned_startup_program = fluid.Program()
        with fluid.program_guard(pruned_program, pruned_startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
        exe.run(pruned_startup_program)
        load_model(exe, pruned_program, 'model_file')
        shapes = {
            "conv1_weights": (4, 3, 3, 3),
            "conv2_weights": (4, 4, 3, 3),
            "conv3_weights": (8, 4, 3, 3),
            "conv4_weights": (4, 8, 3, 3),
            "conv5_weights": (8, 4, 3, 3),
            "conv6_weights": (8, 8, 3, 3)
        }

        for param in pruned_program.global_block().all_parameters():
            if "weights" in param.name:
                print("param: {}; param shape: {}".format(
                    param.name, param.shape))
                self.assertTrue(param.shape == shapes[param.name])