Example #1
0
def main():
    args = parse_args()
    cfg, model_name = _trim(get_config(args.config, show=False), args)
    print(f"Building model({model_name})...")
    model = build_model(cfg)
    assert osp.isfile(
        args.pretrained_params
    ), f"pretrained params ({args.pretrained_params} is not a file path.)"

    if not os.path.isdir(args.output_path):
        os.makedirs(args.output_path)

    print(f"Loading params from ({args.pretrained_params})...")
    params = paddle.load(args.pretrained_params)
    model.set_dict(params)
    model.eval()

    model = to_static(model,
                      input_spec=[
                          paddle.static.InputSpec(shape=[
                              None, args.num_seg, 3, args.img_size,
                              args.img_size
                          ],
                                                  dtype='float32'),
                      ])
    paddle.jit.save(model, osp.join(args.output_path, model_name))
    print(
        f"model ({model_name}) has been already saved in ({args.output_path}).")
Example #2
0
def main():
    args = parse_args()
    cfg, model_name = _trim(get_config(args.config, show=False))
    print(f"Building model({model_name})...")
    model = build_model(cfg)

    params_info = paddle.summary(model, (1, 8, 3, 224, 224))

    print(params_info)
Example #3
0
def main():
    args = parse_args()
    cfg = get_config(args.config, overrides=args.override)

    dataset = build_dataset((cfg.DATASET.test, cfg.PIPELINE.test))
    _, world_size = get_dist_info()
    parallel = world_size != 1
    if parallel:
        paddle.distributed.init_parallel_env()

    model = build_model(cfg.MODEL)

    test_model(model, dataset, cfg, args.weights, world_size)
Example #4
0
def main():
    args = parse_args()
    cfg, model_name = _trim(get_config(args.config, show=False), args)
    print(f"Building model({model_name})...")
    model = build_model(cfg)

    img_size = args.img_size
    num_seg = args.num_seg
    #NOTE: only support tsm now, will refine soon
    params_info = paddle.summary(model, (1, num_seg, 3, img_size, img_size))
    print(params_info)

    if args.FLOPs:
        flops_info = paddle.flops(model, [1, num_seg, 3, img_size, img_size],
                                  print_detail=True)
        print(flops_info)
Example #5
0
def main():
    args = parse_args()
    cfg, model_name = trim_config(get_config(args.config, show=False))
    print(f"Building model({model_name})...")
    model = build_model(cfg.MODEL)
    assert osp.isfile(
        args.pretrained_params
    ), f"pretrained params ({args.pretrained_params} is not a file path.)"

    if not os.path.isdir(args.output_path):
        os.makedirs(args.output_path)

    print(f"Loading params from ({args.pretrained_params})...")
    params = paddle.load(args.pretrained_params)
    model.set_dict(params)

    model.eval()

    input_spec = get_input_spec(cfg.INFERENCE, model_name)
    model = to_static(model, input_spec=input_spec)
    paddle.jit.save(model, osp.join(args.output_path, model_name))
    print(
        f"model ({model_name}) has been already saved in ({args.output_path}).")