Example #1
0
        def __init__(self,
                     height=64,
                     width=64,
                     with_r=False,
                     with_boundary=False):
            super(AddCoordsTh, self).__init__()
            self.with_r = with_r
            self.with_boundary = with_boundary
            device = torch.device(
                'cuda' if torch.cuda.is_available() else 'cpu')

            with torch.no_grad():
                x_coords = torch.arange(height).unsqueeze(1).expand(
                    height, width).float()
                y_coords = torch.arange(width).unsqueeze(0).expand(
                    height, width).float()
                x_coords = (x_coords / (height - 1)) * 2 - 1
                y_coords = (y_coords / (width - 1)) * 2 - 1
                coords = torch.stack([x_coords, y_coords],
                                     dim=0)  # (2, height, width)

                if self.with_r:
                    rr = torch.sqrt(
                        torch.pow(x_coords, 2) +
                        torch.pow(y_coords, 2))  # (height, width)
                    rr = (rr / torch.max(rr)).unsqueeze(0)
                    coords = torch.cat([coords, rr], dim=0)

                self.coords = coords.unsqueeze(0).to(
                    device)  # (1, 2 or 3, height, width)
                self.x_coords = x_coords.to(device)
                self.y_coords = y_coords.to(device)
Example #2
0
def preprocess(x):
    """Preprocess 98-dimensional heatmaps."""
    N, C, H, W = x.size()
    x = truncate(x)
    x = normalize(x)

    sw = H // 256
    operations = Munch(chin=OPPAIR(0, 3),
                       eyebrows=OPPAIR(-7 * sw, 2),
                       nostrils=OPPAIR(8 * sw, 4),
                       lipupper=OPPAIR(-8 * sw, 4),
                       liplower=OPPAIR(8 * sw, 4),
                       lipinner=OPPAIR(-2 * sw, 3))

    for part, ops in operations.items():
        start, end = index_map[part]
        x[:, start:end] = resize(shift(x[:, start:end], ops.shift), ops.resize)

    zero_out = porch.cat([
        porch.arange(0, index_map.chin.start),
        porch.arange(index_map.chin.end, 33),
        porch.LongTensor([
            index_map.eyebrowsedges.start, index_map.eyebrowsedges.end,
            index_map.lipedges.start, index_map.lipedges.end
        ])
    ])
    x[:, zero_out] = 0

    start, end = index_map.nose
    x[:, start + 1:end] = shift(x[:, start + 1:end], 4 * sw)
    x[:, start:end] = resize(x[:, start:end], 1)

    start, end = index_map.eyes
    x[:, start:end] = resize(x[:, start:end], 1)
    x[:, start:end] = resize(shift(x[:, start:end], -8), 3) + \
        shift(x[:, start:end], -24)

    # Second-level mask
    x2 = deepcopy(x)
    x2[:, index_map.chin.start:index_map.chin.end] = 0  # start:end was 0:33
    x2[:, index_map.lipedges.start:index_map.lipinner.
       end] = 0  # start:end was 76:96
    x2[:, index_map.eyebrows.start:index_map.eyebrows.
       end] = 0  # start:end was 33:51

    x = porch.sum(x, dim=1, keepdim=True)  # (N, 1, H, W)
    x2 = porch.sum(x2, dim=1, keepdim=True)  # mask without faceline and mouth

    x[x != x] = 0  # set nan to zero
    x2[x != x] = 0  # set nan to zero
    return x.clamp_(0, 1), x2.clamp_(0, 1)
Example #3
0
 def forward(self, x):
     bsz = x.shape[0]
     x = x.squeeze()
     # positives on the diagonal
     label = torch.arange(bsz).cuda().long()
     loss = self.criterion(x, label)
     return loss
Example #4
0
def shift(x, N):
    """Shift N pixels up or down."""

    up = N >= 0
    N = abs(N)
    _, _, H, W = x.shape
    if N == 0:
        return x
    if up:
        head = torch.arange(H - N) + N
        tail = torch.arange(N)
    else:
        head = torch.arange(N) + (H - N)
        tail = torch.arange(H - N)

    # permutation indices
    perm = torch.cat([head, tail])
    out = torch.stack([x[:, :, int(a)] for a in perm.numpy()], dim=2)
    return out
Example #5
0
def shift(x, N):
    """Shift N pixels up or down."""
    up = N >= 0
    N = abs(N)
    _, _, H, W = x.size()
    head = porch.arange(N)
    tail = porch.arange(H - N)

    if up:
        head = porch.arange(H - N) + N
        tail = porch.arange(N)
    else:
        head = porch.arange(N) + (H - N)
        tail = porch.arange(H - N)

    # permutation indices
    perm = porch.cat([head, tail]).to(x.device)
    out = x[:, :, perm, :]
    return out
Example #6
0
import paddorch

arr = paddorch.convertTensor(1.0 / paddorch.arange(1, 30))
print(arr)

arr[arr > 0.1] = 0.0
print(arr)

arr[paddorch.isfinite(arr)] = 1.0
print(arr)

arr[paddorch.isinf(arr)] = 2.0
print(arr)

arr = paddorch.convertTensor(1.0 / paddorch.arange(1, 31)).view(-1, 5, 2)
print("before", arr)
arr[:, 2, :] = 999
print("after", arr)
Example #7
0
def preprocess(x):
    """Preprocess 98-dimensional heatmaps."""
    N, C, H, W = x.shape
    x = truncate(x)
    x = normalize(x)

    sw = H // 256
    operations = Munch(chin=OPPAIR(0, 3),
                       eyebrows=OPPAIR(-7 * sw, 2),
                       nostrils=OPPAIR(8 * sw, 4),
                       lipupper=OPPAIR(-8 * sw, 4),
                       liplower=OPPAIR(8 * sw, 4),
                       lipinner=OPPAIR(-2 * sw, 3))

    for part, ops in operations.items():
        start, end = index_map[part]
        torch.copy(resize(shift(x[:, start:end], ops.shift), ops.resize),
                   x[:, start:end])
        # =

    zero_out = torch.cat([
        torch.arange(0, index_map.chin.start),
        torch.arange(index_map.chin.end, 33),
        torch.LongTensor([
            index_map.eyebrowsedges.start, index_map.eyebrowsedges.end,
            index_map.lipedges.start, index_map.lipedges.end
        ])
    ])

    x.fill_(val=0, dim=1, indices=zero_out.numpy())
    # x_numpy=x.numpy()
    # x_numpy[:,  zero_out.numpy()] = 0
    # x.set_value(x_numpy)
    # torch.copy(target)
    # x[:, zero_out] = 0

    start, end = index_map.nose
    torch.copy(shift(x[:, start + 1:end], 4 * sw), x[:, start + 1:end])
    torch.copy(resize(x[:, start:end], 1), x[:, start:end])
    # x[:, start+1:end] = shift(x[:, start+1:end], 4*sw)
    # x[:, start:end] = resize(x[:, start:end], 1)

    start, end = index_map.eyes

    torch.copy(resize(x[:, start:end], 1), x[:, start:end])
    torch.copy(resize(shift(x[:, start:end], -8), 3) + \
        shift(x[:, start:end], -24), x[:, start:end] )

    # x[:, start:end] = resize(x[:, start:end], 1)
    # x[:, start:end] = resize(shift(x[:, start:end], -8), 3) + \
    #     shift(x[:, start:end], -24)

    # Second-level mask
    x2 = x.clone()  #deepcopy(x)
    x2.fill_(0, 1, list(range(index_map.chin.start, index_map.chin.end)))
    x2.fill_(0, 1, list(range(index_map.lipedges.start,
                              index_map.lipedges.end)))
    x2.fill_(0, 1, list(range(index_map.eyebrows.start,
                              index_map.eyebrows.end)))
    # x2[:, index_map.chin.start:index_map.chin.end] = 0  # start:end was 0:33
    # x2[:, index_map.lipedges.start:index_map.lipinner.end] = 0  # start:end was 76:96
    # x2[:, index_map.eyebrows.start:index_map.eyebrows.end] = 0  # start:end was 33:51

    x = torch.sum(x, dim=1, keepdim=True)  # (N, 1, H, W)
    x2 = torch.sum(x2, dim=1, keepdim=True)  # mask without faceline and mouth

    x_numpy = x.numpy
    zero_indices = np.where(x_numpy != x_numpy)[0]
    x.fill_(0, 0, zero_indices)
    x2.fill_(0, 0, zero_indices)
    # x[x != x] = 0  # set nan to zero
    # x2[x != x] = 0  # set nan to zero
    return x.clamp_(0, 1), x2.clamp_(0, 1)
Example #8
0
import paddorch
from paddorch import index_copy_inplace_nograd

memory = paddorch.zeros((4, 3))
k = paddorch.arange(0, 6).view(2, 3)
out_ids = paddorch.LongTensor([1, 3])

index_copy_inplace_nograd(memory, 0, out_ids, k)
print("paddorch", memory)

import torch

memory = torch.zeros((4, 3))
k = torch.arange(0, 6).view(2, 3).float()
out_ids = torch.LongTensor([1, 3])

memory.index_copy_(0, out_ids, k)
print("pytorch", memory)