def dict_data_to_sbml(dict_data, dict_orthogroups=None, dict_orthologues=None, strict_match=True): """ Use a dict of data dict_data and dict of orthogroups dict_orthogroup to create sbml files. dict_data and dict_orthogroup are obtained with fun orthofinder_to_sbml 1./ Read dict_orthogroups and check if model associated to dict_data and study org share orthologue 2./ Read sbml of model, parse all reactions and get genes associated to reaction. 3./ For each reactions: Parse genes associated to sub part (ex: (gene-a and gene-b) or gene-c) = [(gene-a,gene-b), gene-c] Check if study org have orthologue with at least one sub part (gene-a, gene-b) or gene-c if yes: add the reaction to the new sbml and change genes ids by study org genes ids 4./ Create the new sbml file. Parameters ---------- dict_data: dict {'study_id': study_id, 'model_id' : model_id, 'sbml_template': path to sbml of model', 'output': path to the output sbml, 'verbose': bool, if true print information } dict_orthogroup: dict k=orthogroup_id, v = {k = name, v = set of genes} verbose: bool if True print information """ #dict_data = {'study_name':'', 'o_compare_name': '', sbml_template':'', 'output':''} study_id = dict_data['study_id'] model_id = dict_data['model_id'] sbml_template = dict_data['sbml_template'] output = dict_data['output'] verbose = dict_data.get('verbose') if dict_orthogroups: if verbose: print( "*Extracting orthogroups data to create sbml of {0} from {1}". format(study_id, model_id)) #k = gene_id from to_compare, v = list of genes id of study sub_dict_orth = {} for k in dict_orthogroups.values(): try: all_to_compare_genes = k[model_id] all_study_genes = k[study_id] for to_compare_gene in all_to_compare_genes: try: sub_dict_orth[to_compare_gene].update(all_study_genes) except KeyError: sub_dict_orth[to_compare_gene] = set(all_study_genes) except KeyError: pass if not sub_dict_orth: if verbose: print("\t{0} and {1} don't share any ortholgue".format( study_id, model_id)) return elif dict_orthologues: if verbose: print( "*Extracting orthologues data to create sbml of {0} from {1}". format(study_id, model_id)) #k = gene_id from to_compare, v = list of genes id of study sub_dict_orth = {} for gene_id, gene_dict in dict_orthologues[model_id].items(): try: sub_dict_orth[gene_id] = gene_dict[study_id] except KeyError: pass if not sub_dict_orth: if verbose: print("\t{0} and {1} don't share any ortholgue".format( study_id, model_id)) return else: ValueError("Must give one dict of orthogroups or orthologue") reader = libsbml.SBMLReader() document_to_compare = reader.readSBML(sbml_template) for i in range(document_to_compare.getNumErrors()): print(document_to_compare.getError(i).getMessage()) model_to_compare = document_to_compare.getModel() listOfReactions_with_genes = [ rxn for rxn in model_to_compare.getListOfReactions() if sp.parseNotes(rxn).get("GENE_ASSOCIATION", [None])[0] ] if verbose: print("\tSbml of {0} contains {1}/{2} reactions with genes assocation". format(model_id, len(listOfReactions_with_genes), len(model_to_compare.getListOfReactions()))) dict_rxn_ga = {} for rxn in listOfReactions_with_genes: ga = sp.parseNotes(rxn)['GENE_ASSOCIATION'][0] ga_for_gbr = re.sub(r" or ", "|", ga) ga_for_gbr = re.sub(r" and ", "&", ga_for_gbr) ga_for_gbr = re.sub(r"\s", "", ga_for_gbr) if re.findall("\||&", ga_for_gbr): to_compare_ga_subsets = list(gbr.compile_input(ga_for_gbr)) else: ga_for_gbr = re.sub(r"\(|\)", "", ga_for_gbr) to_compare_ga_subsets = [[ga_for_gbr]] study_ga_subsets = [] """ to_compare_ga_subsets = [('a','c','d'),('c',)] sub_dict_orth = {'a':['a_a'],'c':['c_c'], 'd':['d_d']} """ for to_compare_subset in to_compare_ga_subsets: study_subset = set() for gene in to_compare_subset: if gene in list(sub_dict_orth.keys()): study_subset.update(sub_dict_orth[gene]) else: study_subset = set() break if study_subset: """ if verbose: print("\t\t{0} == {1}".format(tuple(to_compare_subset), tuple(study_subset))) """ study_ga_subsets.append(study_subset) if study_ga_subsets: study_ga = " or ".join([ "(" + " and ".join(subset) + ")" for subset in study_ga_subsets ]) if verbose: print("\t\tAdding %s" % rxn.id) print("\t\tGENE_ASSOCIATION: %s" % (study_ga)) dict_rxn_ga[rxn.id] = study_ga if not dict_rxn_ga: if verbose: print( "\tNo reaction added from {0} to {1} because of missing orthologues" .format(model_id, study_id)) return rxn_id_to_remove = set([ rxn.id for rxn in model_to_compare.getListOfReactions() ]).difference(list(dict_rxn_ga.keys())) if verbose: print("\tRemoving %s unused reactions" % len(rxn_id_to_remove)) [model_to_compare.removeReaction(rxn_id) for rxn_id in rxn_id_to_remove] cpd_id_to_preserve = set() for rxn_id, study_ga in list(dict_rxn_ga.items()): rxn = model_to_compare.getElementBySId(rxn_id) #update notes notes_in_dict = sp.parseNotes(rxn) notes_in_dict["GENE_ASSOCIATION"] = [study_ga] notes = "<body xmlns=\"http://www.w3.org/1999/xhtml\">" for k, v_list in list(notes_in_dict.items()): for v in v_list: notes += "<p>" + k + ": " + v + "</p>" notes += "</body>" rxn.setNotes(notes) cpd_in_rxn = set([p.getSpecies() for p in rxn.getListOfProducts()]).union(\ set([r.getSpecies() for r in rxn.getListOfReactants()])) cpd_id_to_preserve.update(cpd_in_rxn) all_species = [cpd.id for cpd in model_to_compare.getListOfSpecies()] [ model_to_compare.removeSpecies(cpd_id) for cpd_id in all_species if cpd_id not in cpd_id_to_preserve ] new_id = os.path.basename(os.path.splitext(output)[0]) model_to_compare.setId(new_id) libsbml.writeSBMLToFile(document_to_compare, output)
def compare_multiple_sbml(sbml_path, output_folder): """ Compare 1-n sbml, create two output files reactions.tsv and metabolites.tsv with the reactions/metabolites in each sbml Parameters ---------- sbml_path: str path to a folder containing sbmls or multiple sbml paths separated by a ',' output_folder: str path to the output folder """ if not os.path.exists(output_folder): print("Creating %s" % output_folder) os.makedirs(output_folder) else: print( "%s already exist, old comparison output folders will be overwritten" % output_folder) if os.path.isdir(sbml_path): if not os.path.exists(sbml_path): raise FileNotFoundError( "No SBML directory (--sbml/sbml_path) accessible at " + sbml_path) all_files = [ os.path.join(sbml_path, f) for f in next(os.walk(sbml_path))[2] ] else: all_files = sbml_path.split(",") for sbml_file in all_files: if not os.path.exists(sbml_file): raise FileNotFoundError( "No SBML file (--sbml/sbml_path) accessible at " + sbml_file) species_columns = [ os.path.splitext(os.path.basename(all_file))[0] for all_file in sorted(all_files) ] gene_columns = [ os.path.splitext(os.path.basename(all_file))[0] + '_genes_assoc (sep=;)' for all_file in sorted(all_files) ] all_reactions = {} all_compounds = [] reactions = {} compounds = {} for sbml_file in all_files: sbml_1 = read_sbml_model(sbml_file) reactions[sbml_file] = sbml_1.reactions for rxn in sbml_1.reactions: if rxn.id not in all_reactions: all_reactions[rxn.id] = rxn compounds[sbml_file] = [ metabolite.id for metabolite in sbml_1.metabolites ] all_compounds.extend( [metabolite.id for metabolite in sbml_1.metabolites]) all_compounds = set(all_compounds) reaction_file = output_folder + '/reactions.tsv' reaction_file_rows = [] for reaction_id in all_reactions: reaction_presents = [] reaction_genes = [] row = [reaction_id] for sbml_file in sorted(all_files): if reaction_id in [rxn.id for rxn in reactions[sbml_file]]: reaction_presents.append(1) else: reaction_presents.append(0) if reaction_id in reactions[sbml_file]: species_reaction = reactions[sbml_file].get_by_id(reaction_id) if 'GENE_ASSOCIATION' in species_reaction.notes: ga_for_gbr = species_reaction.notes['GENE_ASSOCIATION'] ga_for_gbr = re.sub(r" or ", "|", ga_for_gbr) ga_for_gbr = re.sub(r" and ", "&", ga_for_gbr) ga_for_gbr = re.sub(r"\s", "", ga_for_gbr) if re.findall("\||&", ga_for_gbr): to_compare_ga_subsets = list(compile_input(ga_for_gbr)) genes = [] for to_compare_subset in to_compare_ga_subsets: for gene in to_compare_subset: genes.append(gene) else: genes = [ga_for_gbr.replace('(', '').replace(')', '')] reaction_genes.append(';'.join(genes)) else: reaction_genes.append('') else: reaction_genes.append('') row = row + reaction_presents + reaction_genes row.append(all_reactions[reaction_id].reaction) reaction_file_rows.append(row) with open(reaction_file, 'w') as output_reaction: csvwriter = csv.writer(output_reaction, delimiter='\t') csvwriter.writerow( ['reaction', *species_columns, *gene_columns, '_formula']) csvwriter.writerows(reaction_file_rows) compounds_file = output_folder + '/metabolites.tsv' compounds_rows = [] for compound_id in all_compounds: row = [compound_id] for sbml_file in sorted(all_files): if compound_id in compounds[sbml_file]: row.append(1) else: row.append(0) compounds_rows.append(row) with open(compounds_file, 'w') as output_compound: csvwriter = csv.writer(output_compound, delimiter='\t') csvwriter.writerow(['metabolite', *sorted(all_files)]) csvwriter.writerows(compounds_rows)
def padmet_to_sbml(padmet, output, model_id = None, obj_fct = None, sbml_lvl = 3, mnx_chem_prop = None, mnx_chem_xref = None, verbose = False): """ Convert padmet file to sbml file. Specificity: - ids are encoded for sbml using functions sbmlPlugin.convert_to_coded_id Parameters ---------- padmet: str or padmet.classes.PadmetSpec/PadmetRef the pathname to the padmet file to convert, or PadmetSpec/PadmetRef object output: str the pathname to the sbml file to create model_id: str or None model id to set in sbml file obj_fct: str the identifier of the objection function, the reaction to test in FBA sbml_lvl: int the sbml level sbml_version: int the sbml version verbose: bool print informations """ global all_ga if isinstance(padmet, str): padmet = PadmetSpec(padmet) if not model_id: model_id = os.path.splitext(os.path.basename(output))[0] if sbml_lvl: sbml_lvl = int(sbml_lvl) else: sbml_lvl = 3 #dir_path_gbr = os.path.dirname(os.path.realpath(__file__))+"/grammar-boolean-rapsody.py" all_ga = [] #create an empty sbml model with_mnx = False if mnx_chem_prop and mnx_chem_xref: with_mnx = True dict_mnx_chem_xref = parse_mnx_chem_xref(mnx_chem_xref) dict_mnx_chem_prop = parse_mnx_chem_prop(mnx_chem_prop) if sbml_lvl == 2: sbmlns = libsbml.SBMLNamespaces(2,1) document = libsbml.SBMLDocument(sbmlns) model = document.createModel() association = None # Create a unit definition mmol_per_gDW_per_hr = model.createUnitDefinition() check(mmol_per_gDW_per_hr, 'create unit definition') check(mmol_per_gDW_per_hr.setId('mmol_per_gDW_per_hr'), 'set unit definition id') unit = mmol_per_gDW_per_hr.createUnit() check(unit, 'create mole unit') check(unit.setKind(libsbml.UNIT_KIND_MOLE), 'set unit kind') check(unit.setScale(-3), 'set unit scale') check(unit.setMultiplier(1), 'set unit multiplier') check(unit.setOffset(0), 'set unit offset') unit = mmol_per_gDW_per_hr.createUnit() check(unit, 'create gram unit') check(unit.setKind(libsbml.UNIT_KIND_GRAM), 'set unit kind') check(unit.setExponent(-1), 'set unit exponent') check(unit.setMultiplier(1), 'set unit multiplier') check(unit.setOffset(0), 'set unit offset') unit = mmol_per_gDW_per_hr.createUnit() check(unit, 'create second unit') check(unit.setKind(libsbml.UNIT_KIND_SECOND), 'set unit kind') check(unit.setExponent(-1), 'set unit exponent') check(unit.setMultiplier(0.00027777), 'set unit multiplier') check(unit.setOffset(0), 'set unit offset') elif sbml_lvl == 3: sbmlns = libsbml.SBMLNamespaces(3,1,"fbc",1) document = libsbml.SBMLDocument(sbmlns) document.setPackageRequired("fbc", False) model = document.createModel() mplugin = model.getPlugin("fbc") association = ['<annotation>', '<listOfGeneAssociations xmlns="http://www.sbml.org/sbml/level3/version1/fbc/version1">'] check(model, 'create model') check(model.setTimeUnits("second"), 'set model-wide time units') check(model.setExtentUnits("mole"), 'set model units of extent') check(model.setSubstanceUnits('mole'), 'set model substance units') if not model_id: model_id = os.path.splitext(os.path.basename(output))[0] model.setId(model_id) math_ast = libsbml.parseL3Formula('FLUX_VALUE') check(math_ast, 'create AST for rate expression') #generator of tuple: (x,y) x=species id,y=value of compart, if not defined="" species = [(rlt.id_out, rlt.misc.get("COMPARTMENT",[None])[0]) for rlt in padmet.getAllRelation() if rlt.type in ["consumes","produces"]] if verbose: print("%s species" %len(species)) #compart_dict: k = id_encoded, v = original id compart_dict = {} #species_dict: k = species_id_encoded, v = dict: k' = {species_id, compart, name}, v' = value or None species_dict = {} for species_id, compart in species: #encode id for sbml species_id_encoded = sp.convert_to_coded_id(species_id, "M", compart) #encode compart id for sbml #try to get the common_name, if non value return None name = padmet.dicOfNode[species_id].misc.get("COMMON-NAME",[species_id])[0] #update dicts species_dict[species_id_encoded] = {"species_id":species_id, "compart":compart, "name":name} for species_id_encoded, s_dict in species_dict.items(): compart = s_dict["compart"] name = s_dict["name"] original_id = s_dict["species_id"] s = model.createSpecies() check(s, 'create species') check(s.setId(species_id_encoded), 'set species id %s' %species_id_encoded) check(s.setMetaId(species_id_encoded), 'set species meta id %s' %species_id_encoded) check(s.setBoundaryCondition(False), 'set boundaryCondition to False') check(s.setHasOnlySubstanceUnits(False), 'set setHasOnlySubstanceUnits to False') check(s.setConstant(False), 'set setConstant to False') check(s.setInitialAmount(0.0), 'set initAmount') #check(s.setMetaId(metaId), 'set species MetaId %s' %metaId) if name is not None: check(s.setName(name), 'set species Name %s' %name) else: check(s.setName(name), 'set species Name %s' %species_id) if compart is not None: compart_encoded = sp.convert_to_coded_id(compart) compart_dict[compart_encoded] = compart check(s.setCompartment(compart_encoded), 'set species compartment %s' %compart_encoded) if compart == BOUNDARY_ID: check(s.setBoundaryCondition(True), 'set boundaryCondition to True') if with_mnx: try: mnx_id = dict_mnx_chem_xref[original_id] species_prop = dict(dict_mnx_chem_prop[mnx_id]) except (IndexError, KeyError) as e: #print(species_id) species_prop = None if species_prop: [species_prop.pop(k) for k,v in list(species_prop.items()) if (not v or v == "NA")] try: charge = int(species_prop["charge"]) except (ValueError, KeyError) as e: charge = 0 formula = species_prop.get("formula","") if re.findall("\(|\)|\.",formula): formula = None inchi = species_prop.get("inchi", None) if sbml_lvl == 3: splugin = s.getPlugin("fbc") check(splugin.setCharge(charge), 'set charge') if formula: check(splugin.setChemicalFormula(formula), 'set Formula') if inchi: annot_xml = create_annotation(inchi, species_id_encoded) check(s.setAnnotation(annot_xml), 'set Annotations') for prop, prop_v in list(species_prop.items()): if prop in ["charge", "formula", "source", "description","inchi"] or prop_v in ["NA",""]: species_prop.pop(prop) notes = create_note(species_prop) check(s.setNotes(notes), 'set Notes') for k, v in compart_dict.items(): compart = model.createCompartment() check(compart,'create compartment') check(compart.setId(k),'set compartment id %s' %k) check(compart.setSize(1),'set size for compartment id %s' %k) check(compart.setConstant(True),'set constant for compartment id %s' %k) if v == "c": check(compart.setName("cytosol"),'set compartment name cytosol') elif v == "e": check(compart.setName("extracellular"),'set compartment name extracellular') elif v == "p": check(compart.setName("periplasm"),'set compartment name periplasm') elif v != k: check(compart.setName(v),'set compartment id %s' %v) if obj_fct is not None: obj_fct_encoded = sp.convert_to_coded_id(obj_fct) if verbose: print("the objectif reaction is: %s" %(obj_fct_encoded)) reactions = [node for node in padmet.dicOfNode.values() if node.type == "reaction"] nb_reactions = str(len(reactions)) # Create reactions if verbose: print("%s reactions" %nb_reactions) for rNode in reactions: rId = rNode.id rId_encoded = sp.convert_to_coded_id(rId,"R") rName = rNode.misc.get("COMMON-NAME",[rId])[0] reaction = model.createReaction() check(reaction, 'create reaction') check(reaction.setId(rId_encoded), 'set reaction id %s' %rId_encoded) if rName is not None: check(reaction.setName(rName), 'set reaction name %s' %rName) check(reaction.setFast(False), 'set fast') #generator of tuple (reactant_id,stoichiometry,compart) consumed = ((rlt.id_out, rlt.misc["STOICHIOMETRY"][0], rlt.misc.get("COMPARTMENT",[None])[0]) for rlt in padmet.dicOfRelationIn.get(rId, None) if rlt.type == "consumes") #generator of tuple (product_id,stoichiometry,compart) produced = ((rlt.id_out, rlt.misc["STOICHIOMETRY"][0], rlt.misc.get("COMPARTMENT",[None])[0]) for rlt in padmet.dicOfRelationIn.get(rId, None) if rlt.type == "produces") #set reversibility direction = rNode.misc["DIRECTION"][0] if direction == "LEFT-TO-RIGHT": reversible = False else: reversible = True check(reaction.setReversible(reversible), 'set reaction reversibility flag %s' %reversible) if sbml_lvl == 3: bound= mplugin.createFluxBound() bound.setReaction(rId_encoded) bound.setOperation("lessEqual") bound.setValue(def_max_upper_bound) bound= mplugin.createFluxBound() bound.setReaction(rId_encoded) bound.setOperation("greaterEqual") if reversible: bound.setValue(def_max_lower_bound) else: bound.setValue(0) if rId == obj_fct: objective = mplugin.createObjective() objective.setId("obj1") objective.setType("maximize") mplugin.setActiveObjectiveId("obj1") fluxObjective = objective.createFluxObjective() fluxObjective.setReaction(rId_encoded) fluxObjective.setCoefficient(1) elif sbml_lvl == 2: kinetic_law = reaction.createKineticLaw() check(kinetic_law, 'create kinetic law') check(kinetic_law.setMath(math_ast), 'set math on kinetic law') #add parameter flux_value flux_value_k = kinetic_law.createParameter() check(flux_value_k, 'create parameter flux_value_k') check(flux_value_k.setId('FLUX_VALUE'), 'set parameter flux_value_k id') check(flux_value_k.setValue(0), 'set parameter flux_value_k value') check(flux_value_k.setUnits('mmol_per_gDW_per_hr'), 'set parameter flux_value_k units') #add parameter upper/lower_bound, lower value depend on reversibility upper_bound_k = kinetic_law.createParameter() check(upper_bound_k, 'create parameter upper_bound_k') check(upper_bound_k.setId('UPPER_BOUND'), 'set parameter upper_bound_k') check(upper_bound_k.setValue(def_max_upper_bound),'set parameter upper_bounp_k value') check(upper_bound_k.setUnits('mmol_per_gDW_per_hr'), 'set parameter uppper_bound_k units') if reversible: lower_bound_k = kinetic_law.createParameter() check(lower_bound_k, 'create parameter lower_bound_k') check(lower_bound_k.setId('LOWER_BOUND'), 'set parameter lower_bound_k id') check(lower_bound_k.setValue(def_max_lower_bound), 'set parameter lower_bound_k value') check(lower_bound_k.setUnits('mmol_per_gDW_per_hr'), 'set parameter lower_bound_k units') else: lower_bound_k = kinetic_law.createParameter() check(lower_bound_k, 'create parameter lower_bound_k') check(lower_bound_k.setId('LOWER_BOUND'), 'set parameter lower_bound_k id') check(lower_bound_k.setValue(0), 'set parameter lower_bound_k value') check(lower_bound_k.setUnits('mmol_per_gDW_per_hr'), 'set parameter lower_bound_k units') #objective_coeeficient if rId == obj_fct: obj_fct_k = kinetic_law.createParameter() check(obj_fct_k, 'create parameter obj_fct_k') check(obj_fct_k.setId('OBJECTIVE_COEFFICIENT'), 'set parameter obj_fct_k id') check(obj_fct_k.setValue(1), 'set parameter obj_fct_k value') else: obj_fct_k = kinetic_law.createParameter() check(obj_fct_k, 'create parameter obj_fct_k') check(obj_fct_k.setId('OBJECTIVE_COEFFICIENT'), 'set parameter obj_fct_k id') check(obj_fct_k.setValue(0), 'set parameter obj_fct_k value') for cId, stoich, compart in consumed: cId_encoded = sp.convert_to_coded_id(cId,"M",compart) try: stoich = float(stoich) #for case stoich = n except ValueError: stoich = float(1) species_ref = reaction.createReactant() check(species_ref, 'create reactant') check(species_ref.setSpecies(cId_encoded), 'assign reactant species %s' %cId_encoded) check(species_ref.setStoichiometry(stoich), 'set stoichiometry %s' %stoich) check(species_ref.setStoichiometry(stoich), 'set stoichiometry %s' %stoich) if sbml_lvl == 3: check(species_ref.setConstant(False), 'set constant %s' %False) for pId, stoich, compart in produced: pId_encoded = sp.convert_to_coded_id(pId,"M",compart) try: stoich = float(stoich) except ValueError: stoich = float(1) species_ref = reaction.createProduct() check(species_ref, 'create product') check(species_ref.setSpecies(pId_encoded), 'assign product species %s' %pId_encoded) check(species_ref.setStoichiometry(stoich), 'set stoichiometry %s' %stoich) if sbml_lvl == 3: check(species_ref.setConstant(False), 'set constant %s' %False) linked_genes = set([rlt.id_out for rlt in padmet.dicOfRelationIn.get(rId, []) if rlt.type == "is_linked_to"]) all_suppData = [padmet.dicOfNode[rlt.id_out] for rlt in padmet.dicOfRelationIn[rId] if rlt.type == "has_suppData"] #if rxn has suppdata, check in each suppData, if GENE_ASSOCIATION in misc #if run gbr.py to convert the gene assoc to a list of tuple representing the assoc #ex: #orignia_la: (a or b) and c => #ga_subsets: [(a,b),(c)] #add each ga in ga_subsets in all_ga_subsets #for each ga in all_ga_subsets: if len == 1: if the only ga len == 1: just add gene, else create OR structure #elif len > 1: create AND structure, then for each GA if len GA == 1: just add gene, else create OR structure #if no suppdata, if linked_genes: if len linked_genes == 1: just add gene, else create OR structure all_ga_subsets = list() if all_suppData: for suppData in all_suppData: try: original_ga = suppData.misc["GENE_ASSOCIATION"][0] ga_for_gbr = re.sub(r" or " , "|", original_ga) ga_for_gbr = re.sub(r" and " , "&", ga_for_gbr) ga_for_gbr = re.sub(r"\s" , "", ga_for_gbr) #ga_for_gbr = "\"" + ga_for_gbr + "\"" if re.findall("\||\&",ga_for_gbr) and len(re.findall("\||\&",ga_for_gbr)) < 100: ga_subsets = [] [ga_subsets.append(set(i)) for i in compile_input(ga_for_gbr)] for ga in ga_subsets: if ga not in all_ga_subsets: all_ga_subsets.append(ga) except KeyError: pass if all_ga_subsets: for gene_id in linked_genes: if not any([gene_id in ga for ga in all_ga_subsets]): all_ga_subsets.append([gene_id]) else: for gene_id in linked_genes: all_ga_subsets.append([gene_id]) if association: if all_ga_subsets: add_ga(rId_encoded, all_ga_subsets) elif linked_genes: add_ga(rId_encoded, all_ga_subsets) #set notes notes_dict = {} if linked_genes: notes_dict["GENE_ASSOCIATION"] = " or ".join(["("+" and ".join([i for i in g])+")" for g in all_ga_subsets]) try: categories = set([padmet.dicOfNode[rlt.id_out].misc["CATEGORY"][0] for rlt in padmet.dicOfRelationIn.get(rId,[]) if rlt.type == "has_reconstructionData"]) except KeyError: categories = None if categories: notes_dict["CATEGORIES"] = " and ".join(categories) pathways = set([rlt.id_out for rlt in padmet.dicOfRelationIn.get(rId, []) if rlt.type == "is_in_pathway"]) if len(pathways) != 0: notes_dict["SUBSYSTEM"] = " , ".join(pathways) if list(notes_dict.keys()): notes = create_note(notes_dict) check(reaction.setNotes(notes), 'set notes %s' %notes) if all_ga: for ga in all_ga: association.extend(ga) association.extend(['</listOfGeneAssociations>', '</annotation>']) association = " ".join(association) model.setAnnotation(association) if verbose: print("Done, creating sbml file: %s" %output) libsbml.writeSBMLToFile(document, output)
def test_gbr(): expected = [('a', 'b', 'd'), ('a', 'b', 'e'), ('a', 'c', 'd'), ('a', 'c', 'e')] gbr_results = [elements for elements in gbr.compile_input('a&(b|c)&(d|e)')] assert gbr_results == expected