def predict_one_source(w, query_data, params): K = params["K"] candidates = query_data["candidates"] (A, A_data) = edge_computation.compute_A(w, query_data["feature_stack"], query_data["edge_ij"], params["edge_strength_fun"], query_data["num_nodes"]) Q = edge_computation.compute_Q(A, A_data, query_data["edge_ij"], query_data["source"], query_data["num_nodes"], params) p_0 = numpy.ones((query_data["num_nodes"], 1)) / (1.0 * query_data["num_nodes"]) p = page_rank_update.update_p(p_0, Q, params) indices = numpy.argsort(-1.0 * p[candidates], axis = 0) positives = [] negatives = [] for k in range(indices.shape[0]): if k < K: positives.append(candidates[indices[k, 0]]) else: negatives.append(candidates[indices[k, 0]]) #print("min(p+) - max(p-) = %f"%(numpy.amin(p[positives]) - numpy.amax(p[negatives]))) #print("max(p+) - min(p-) = %f"%(numpy.amax(p[positives]) - numpy.amin(p[negatives]))) return (positives, negatives)
def cost_one_source(w, training_data, p_warm_start, params): s = training_data["source"] (A, A_data) = edge_computation.compute_A( w, training_data["feature_stack"], training_data["edge_ij"], params["edge_strength_fun"], training_data["num_nodes"], ) Q = edge_computation.compute_Q(A, A_data, training_data["edge_ij"], s, training_data["num_nodes"], params) p = page_rank_update.update_p(p_warm_start, Q, params) loss_fun = params["loss_fun"] margin = params["margin"] positives = training_data["positives"] negatives = training_data["negatives"] candidates = list(set(positives + negatives)) p_prime = p / numpy.sum(p[candidates]) diff_generating_mat = training_data["diff_generating_mat"] diffs = diff_generating_mat.dot(p_prime) loss = numpy.sum(loss_fun(diffs, margin)) return (loss, p)
import numpy.random import scipy.sparse import partial_gradient_update import page_rank_update import sys import random num_nodes = 2 perturbation = 0 rho = float(sys.argv[1]) * random.random() numpy.random.seed(0) Q_dense = numpy.random.rand(num_nodes, num_nodes) Q_dense /= numpy.tile(numpy.dot(Q_dense, numpy.ones((num_nodes, 1))), (1, num_nodes)) print(numpy.eye(num_nodes, num_nodes) - Q_dense.T) A = numpy.eye(num_nodes, num_nodes) - Q_dense.T z = 100.0 * numpy.random.rand(num_nodes, 1) Q_grad_dense = numpy.tile(numpy.dot(A, z), (1, num_nodes)).T Q_grad_dense += perturbation * numpy.random.rand(num_nodes, num_nodes) Q = scipy.sparse.csr_matrix(Q_dense) p = numpy.random.rand(num_nodes, 1) p_grad = numpy.zeros((num_nodes, 1)) p_grad[0] = rho p /= numpy.sum(p) p = page_rank_update.update_p(p, Q, {"page_rank_epsilon": 1e-12}) print(p) Q_grad = scipy.sparse.csr_matrix(Q_grad_dense) print(Q_grad.T.dot(p)) p_grad = partial_gradient_update.update_p_grad(p, p_grad, Q, [Q_grad], 1, {"partial_gradient_update_epsilon": 1e-12}) print(numpy.dot(A, p_grad) - numpy.dot(A, z))