def cs_impl(cls, data=None):
     hps = {
         'sampling_strategy':
         CatHP(choice,
               items=['majority', 'not minority', 'not majority', 'all'])
     }
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #2
0
    def cs_impl(cls):
        hps = {
            'solver': CatHP(choice, a=['svd', 'lsqr', 'eigen']),
            'shrinkage': CatHP(choice, a=[None, 'auto']),
            'tol': RealHP(uniform, low=1e-6, high=0.5)
        }

        return ConfigSpace(name=cls.__name__, hps=hps)
Example #3
0
    def cs_impl(cls):
        hps = {'kernel': CatHP(choice,a=['linear','poly','rbf','sigmoid']),
        'degree': IntHP(uniform,low=1,high=5), #ignored if kernel != poly
        'gamma': RealHP(uniform,low=1e-3,high=1.0), #ignored if kernel != rbf or sigmoid
        'C': RealHP(uniform,low=1e-1,high=1e4),
        'epsilon': RealHP(uniform,low=1e-1,high=1e-4),
        'max_iter': IntHP(uniform,low=100,high=1000)}

        return ConfigSpace(name='SVR', hps=hps)
Example #4
0
    def cs_impl(cls):
        hps = {
            'n_neighbors': IntHP(uniform, low=1, high=15),
            'weights': CatHP(choice, a=['uniform', 'distance']),
            'algorithm': CatHP(choice, a=['kd_tree', 'ball_tree']),
            'leaf_size': IntHP(uniform, low=15, high=100),
            'p': IntHP(uniform, low=1, high=5)
        }  #default metric: 'minkowski'

        return ConfigSpace(name='KNN', hps=hps)
Example #5
0
 def cs_impl(cls, config_spaces):
     hps = [
         CatHP('configs',
               cls.sampling_function,
               config_spaces=config_spaces[0]),
         CatHP('reduce',
               cls.sampling_function,
               config_spaces=config_spaces[1])
     ]
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #6
0
 def cs_impl(cls):
     hps = {
         'sampling_strategy':
         CatHP(choice,
               items=[
                   'not minority', 'not majority', 'all', 'minority', 'auto'
               ]),
         'k_neighbours':
         IntHP(uniform, low=2, high=1000)
     }
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #7
0
    def cs_impl(cls):
        hps = {
            'alpha': RealHP(uniform, low=1e-5, high=10.0),
            'kernel': CatHP(choice,
                            a=['linear', 'polynomial', 'rbf', 'sigmoid']),
            'gamma': RealHP(uniform, low=1e-5,
                            high=10.0),  #ignored if kernel = linear
            'degree': IntHP(uniform, low=1, high=5)
        }  #ignored if kernel != polynomial

        return ConfigSpace(name='KRR', hps=hps)
Example #8
0
    def cs_impl(cls):

        hps = {
            'n_neighbors': IntHP(uniform, low=2, high=1000),
            'weights': CatHP(choice, a=['uniform', 'distance']),
            'algorithm': CatHP(choice,
                               a=['auto', 'ball_tree', 'kd_tree', 'brute']),
            'leaf_size': IntHP(uniform, low=2, high=1000),
            'p': IntHP(uniform, low=1, high=6)
        }

        return ConfigSpace(name=cls.__name__, hps=hps)
Example #9
0
    def cs_impl(cls):

        hps = {
            'n_estimators': IntHP(uniform, low=2, high=1000),
            'criterion': CatHP(choice, a=['mse', 'mae']),
            'max_features': CatHP(choice, a=['auto', 'sqrt', 'log2', None]),
            'max_depth': IntHP(uniform, low=2, high=1000),
            'min_samples_split': RealHP(uniform, low=1e-6, high=0.5),
            'min_samples_leaf': RealHP(uniform, low=1e-6, high=0.5),
            'min_weight_fraction_leaf': RealHP(uniform, low=0.0, high=0.5),
            'min_impurity_decrease': RealHP(uniform, low=0.0, high=0.2)
        }

        return ConfigSpace(name='RF', hps=hps)
Example #10
0
    def cs_impl(cls):
        hps = {
            'C': RealHP(uniform, low=0.0, high=10000.0),
            'kernel': CatHP(choice, a=['linear', 'poly', 'rbf', 'sigmoid']),
            'degree': IntHP(uniform, low=0, high=1000),
            'gamma': CatHP(choice, a=['scale', 'auto']),
            'coef0': RealHP(uniform, low=0.0, high=1000.0),
            'shrinking': CatHP(choice, a=[True, False]),
            'probability': CatHP(choice, a=[True, False]),
            'tol': RealHP(uniform, low=1e-6, high=0.5),
            'max_iter': IntHP(uniform, low=-1, max=10000),
            'decision_function_shape': CatHP(choice, a=['ovo', 'ovr'])
        }

        return ConfigSpace(name=cls.__name__, hps=hps)
Example #11
0
    def cs_impl(cls):
        hps = {
            'penalty':
            CatHP(choice, a=['l1', 'l2', 'elasticnet', 'none']),
            'dual':
            CatHP(uniform, a=[True, False]),
            'tol':
            RealHP(uniform, low=1e-6, high=0.5),
            'C':
            RealHP(uniform, low=0.0, high=10000.0),
            'fit_intercept':
            CatHP(uniform, a=[True, False]),
            'solver':
            CatHP(choice, a=['newton-cg', 'lbfgs', 'liblinear', 'sag',
                             'saga']),
            'max_iter':
            IntHP(uniform, low=1, max=10000)
        }

        return ConfigSpace(name=cls.__name__, hps=hps)
Example #12
0
    def cs_impl(cls):
        # Sw
        # cs = ConfigSpace('Switch')
        # st = cs.start()
        # st.add_children([a.start, b.start, c.start])
        # cs.finish([a.end,b.end,c.end])

        hps = {
            'criterion': CatHP(choice, a=['gini', 'entropy']),
            'splitter': CatHP(choice, a=['best']),
            'class_weight': CatHP(choice, a=[None, 'balanced']),
            'max_features': CatHP(choice, a=['auto', 'sqrt', 'log2', None]),
            'max_depth': IntHP(uniform, low=2, high=1000),
            'min_samples_split': RealHP(uniform, low=1e-6, high=0.3),
            'min_samples_leaf': RealHP(uniform, low=1e-6, high=0.3),
            'min_weight_fraction_leaf': RealHP(uniform, low=0.0, high=0.3),
            'min_impurity_decrease': RealHP(uniform, low=0.0, high=0.2)
        }

        return ConfigSpace(name='DT', hps=hps)
Example #13
0
    def cs_impl(cls):

        hps = {
            'n_estimators': IntHP(uniform, low=2, high=1000),
            'criterion': CatHP(choice, a=['mse', 'mae', 'friedman_mse']),
            'max_features': CatHP(choice, a=['auto', 'sqrt', 'log2', None]),
            'max_depth': IntHP(uniform, low=2, high=100),
            'min_samples_split': RealHP(uniform, low=1e-6, high=0.5),
            'min_samples_leaf': RealHP(uniform, low=1e-6, high=0.5),
            'min_weight_fraction_leaf': RealHP(uniform, low=0.0, high=0.5),
            'min_impurity_decrease': RealHP(uniform, low=0.0, high=0.2),
            'loss': CatHP(choice, a=['ls', 'lad', 'huber', 'quantile']),
            'learning_rate': RealHP(uniform, low=1e-4, high=1e-1),
            'subsample': RealHP(uniform, low=0.1, high=0.9),
            'alpha': RealHP(uniform, low=0.1,
                            high=0.9),  #ignored if loss != huber or quantile
            'validation_fraction': RealHP(uniform, low=0.1,
                                          high=0.9),  # Using Early Stopping #
            'n_iter_no_change': IntHP(uniform, low=5,
                                      high=20)  #                      #
        }

        return ConfigSpace(name='GB', hps=hps)
Example #14
0
 def cs_impl(cls, config_spaces):
     hps = {'configs': CatHP(cls.sampling_function,
                             config_spaces=config_spaces)}
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #15
0
    def cs_impl(cls):
        hps = {'alpha': RealHP(uniform, low=1e-5, high=10.0)}

        return ConfigSpace(name='LASSO', hps=hps)
 def cs_impl(cls):
     hps = {'feature_range': CatHP(choice, items=[(-1, 1), (0, 1)])}
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #17
0
 def cs_impl(cls):
     hps = {'@nb_type': CatHP(choice, items=['GaussianNB', 'BernoulliNB'])}
     return ConfigSpace(name='NB', hps=hps)
Example #18
0
 def cs_impl(cls):
     hps = [CatHP('function', choice, itens=['mean'])]
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #19
0
 def cs_impl(cls):
     hps = {'function': CatHP(choice, items=['mean'])}
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #20
0
 def cs_impl(self):
     hps = {
         '@nb_type': CatHP(choice, items=["MultinomialNB", "ComplementNB"])
     }
     return ConfigSpace(name='NB', hps=hps)
Example #21
0
 def cs_impl(cls, data=None):
     hps = {
         '@with_mean/std':
         CatHP(choice, items=[(True, False), (False, True), (True, True)])
     }
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #22
0
 def cs_impl(cls):
     # TODO: cirar funcao no data
     hps = [CatHP('field', choice, itens=['X', 'Y', 'Z'])]
     return ConfigSpace(name=cls.__name__, hps=hps)
Example #23
0
 def cs_impl(cls):
     # TODO: cirar funcao no data
     hps = {'field': CatHP(choice, items=['X', 'Y', 'Z'])}
     return ConfigSpace(name=cls.__name__, hps=hps)