Example #1
0
    def __init__(self):
        
        self.keyMap = {"left":0, "right":0, "forward":0, "cam-left":0, "cam-right":0}
        base.win.setClearColor(Vec4(0,0,0,1))

        # Post the instructions

        self.title = addTitle("Panda3D Tutorial: Roaming Ralph (Walking on Uneven Terrain)")
        self.inst1 = addInstructions(0.95, "[ESC]: Quit")
        self.inst2 = addInstructions(0.90, "[Left Arrow]: Rotate Ralph Left")
        self.inst3 = addInstructions(0.85, "[Right Arrow]: Rotate Ralph Right")
        self.inst4 = addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        self.inst6 = addInstructions(0.70, "[A]: Rotate Camera Left")
        self.inst7 = addInstructions(0.65, "[S]: Rotate Camera Right")
        
        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.  

        self.environ = loader.loadModel("models/samples/roaming_ralph/world")
        self.environ.reparentTo(render)
        self.environ.setPos(0,0,0)
        
        # Create the main character, Ralph

        ralphStartPos = self.environ.find("**/start_point").getPos()
        self.ralph = Actor("models/samples/roaming_ralph/ralph",
            {"run":"models/samples/roaming_ralph/ralph_run",
             "walk":"models/samples/roaming_ralph/ralph_walk"})
        self.ralph.reparentTo(render)
        self.ralph.setScale(.2)
        self.ralph.setPos(ralphStartPos)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.
        
        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("arrow_left", self.setKey, ["left",1])
        self.accept("arrow_right", self.setKey, ["right",1])
        self.accept("arrow_up", self.setKey, ["forward",1])
        self.accept("a", self.setKey, ["cam-left",1])
        self.accept("s", self.setKey, ["cam-right",1])
        self.accept("arrow_left-up", self.setKey, ["left",0])
        self.accept("arrow_right-up", self.setKey, ["right",0])
        self.accept("arrow_up-up", self.setKey, ["forward",0])
        self.accept("a-up", self.setKey, ["cam-left",0])
        self.accept("s-up", self.setKey, ["cam-right",0])

        taskMgr.add(self.move,"moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera
        
        base.disableMouse()
        base.camera.setPos(self.ralph.getX(),self.ralph.getY()+10,2)
        
        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0,0,1000)
        self.ralphGroundRay.setDirection(0,0,-1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0,0,1000)
        self.camGroundRay.setDirection(0,0,-1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)
Example #2
0
  def __init__(self):
    #This code puts the standard title and instruction text on screen
    self.title = OnscreenText(text="Panda3D: Tutorial - Collision Detection",
                              style=1, fg=(1,1,1,1),
                              pos=(0.7,-0.95), scale = .07, font = font)
    self.instructions = OnscreenText(text="Mouse pointer tilts the board",
                                     pos = (-1.3, .95), fg=(1,1,1,1), font = font,
                                     align = TextNode.ALeft, scale = .05)
    
    self.accept("escape", sys.exit)        #Escape quits
    base.disableMouse()                    #Disable mouse-based camera control
    camera.setPosHpr(0, 0, 25, 0, -90, 0)  #Place the camera

    #Load the maze and place it in the scene
    self.maze = loader.loadModel("models/samples/ball_in_maze/maze")
    self.maze.reparentTo(render)

    #Most times, you want collisions to be tested against invisible geometry
    #rather than every polygon. This is because testing against every polygon
    #in the scene is usually too slow. You can have simplified or approximate
    #geometry for the solids and still get good results.
    #
    #Sometimes you'll want to create and position your own collision solids in
    #code, but it's often easier to have them built automatically. This can be
    #done by adding special tags into an egg file. Check maze.egg and ball.egg
    #and look for lines starting with <Collide>. The part is brackets tells
    #Panda exactly what to do. Polyset means to use the polygons in that group
    #as solids, while Sphere tells panda to make a collision sphere around them
    #Keep means to keep the polygons in the group as visable geometry (good
    #for the ball, not for the triggers), and descend means to make sure that
    #the settings are applied to any subgroups.
    #
    #Once we have the collision tags in the models, we can get to them using
    #NodePath's find command

    #Find the collision node named wall_collide
    self.walls = self.maze.find("**/wall_collide")

    #Collision objects are sorted using BitMasks. BitMasks are ordinary numbers
    #with extra methods for working with them as binary bits. Every collision
    #solid has both a from mask and an into mask. Before Panda tests two
    #objects, it checks to make sure that the from and into collision masks
    #have at least one bit in common. That way things that shouldn't interact
    #won't. Normal model nodes have collision masks as well. By default they
    #are set to bit 20. If you want to collide against actual visable polygons,
    #set a from collide mask to include bit 20
    #
    #For this example, we will make everything we want the ball to collide with
    #include bit 0
    self.walls.node().setIntoCollideMask(BitMask32.bit(0))
    #CollisionNodes are usually invisible but can be shown. Uncomment the next
    #line to see the collision walls
    #self.walls.show()

    #We will now find the triggers for the holes and set their masks to 0 as
    #well. We also set their names to make them easier to identify during
    #collisions
    self.loseTriggers = []
    for i in range(6):
      trigger = self.maze.find("**/hole_collide" + str(i))
      trigger.node().setIntoCollideMask(BitMask32.bit(0))
      trigger.node().setName("loseTrigger")
      self.loseTriggers.append(trigger)
      #Uncomment this line to see the triggers
      #trigger.show()

    #Ground_collide is a single polygon on the same plane as the ground in the
    #maze. We will use a ray to collide with it so that we will know exactly
    #what height to put the ball at every frame. Since this is not something
    #that we want the ball itself to collide with, it has a different
    #bitmask.
    self.mazeGround = self.maze.find("**/ground_collide")
    self.mazeGround.node().setIntoCollideMask(BitMask32.bit(1))
    
    #Load the ball and attach it to the scene
    #It is on a root dummy node so that we can rotate the ball itself without
    #rotating the ray that will be attached to it
    self.ballRoot = render.attachNewNode("ballRoot")
    self.ball = loader.loadModel("models/samples/ball_in_maze/ball")
    self.ball.reparentTo(self.ballRoot)

    #Find the collison sphere for the ball which was created in the egg file
    #Notice that it has a from collision mask of bit 0, and an into collison
    #mask of no bits. This means that the ball can only cause collisions, not
    #be collided into
    self.ballSphere = self.ball.find("**/ball")
    self.ballSphere.node().setFromCollideMask(BitMask32.bit(0))
    self.ballSphere.node().setIntoCollideMask(BitMask32.allOff())

    #No we create a ray to start above the ball and cast down. This is to
    #Determine the height the ball should be at and the angle the floor is
    #tilting. We could have used the sphere around the ball itself, but it
    #would not be as reliable
    self.ballGroundRay = CollisionRay()     #Create the ray
    self.ballGroundRay.setOrigin(0,0,10)    #Set its origin
    self.ballGroundRay.setDirection(0,0,-1) #And its direction
    #Collision solids go in CollisionNode
    self.ballGroundCol = CollisionNode('groundRay') #Create and name the node
    self.ballGroundCol.addSolid(self.ballGroundRay) #Add the ray
    self.ballGroundCol.setFromCollideMask(BitMask32.bit(1)) #Set its bitmasks
    self.ballGroundCol.setIntoCollideMask(BitMask32.allOff())
    #Attach the node to the ballRoot so that the ray is relative to the ball
    #(it will always be 10 feet over the ball and point down)
    self.ballGroundColNp = self.ballRoot.attachNewNode(self.ballGroundCol)
    #Uncomment this line to see the ray
    #self.ballGroundColNp.show()

    #Finally, we create a CollisionTraverser. CollisionTraversers are what
    #do the job of calculating collisions
    self.cTrav = CollisionTraverser()
    #Collision traverservs tell collision handlers about collisions, and then
    #the handler decides what to do with the information. We are using a
    #CollisionHandlerQueue, which simply creates a list of all of the
    #collisions in a given pass. There are more sophisticated handlers like
    #one that sends events and another that tries to keep collided objects
    #apart, but the results are often better with a simple queue
    self.cHandler = CollisionHandlerQueue()
    #Now we add the collision nodes that can create a collision to the
    #traverser. The traverser will compare these to all others nodes in the
    #scene. There is a limit of 32 CollisionNodes per traverser
    #We add the collider, and the handler to use as a pair
    self.cTrav.addCollider(self.ballSphere, self.cHandler)
    self.cTrav.addCollider(self.ballGroundColNp, self.cHandler)

    #Collision traversers have a built in tool to help visualize collisions.
    #Uncomment the next line to see it.
    #self.cTrav.showCollisions(render)
    
    #This section deals with lighting for the ball. Only the ball was lit
    #because the maze has static lighting pregenerated by the modeler
    lAttrib = LightAttrib.makeAllOff()
    ambientLight = AmbientLight( "ambientLight" )
    ambientLight.setColor( Vec4(.55, .55, .55, 1) )
    lAttrib = lAttrib.addLight( ambientLight )
    directionalLight = DirectionalLight( "directionalLight" )
    directionalLight.setDirection( Vec3( 0, 0, -1 ) )
    directionalLight.setColor( Vec4( 0.375, 0.375, 0.375, 1 ) )
    directionalLight.setSpecularColor(Vec4(1,1,1,1))
    lAttrib = lAttrib.addLight( directionalLight )
    self.ballRoot.node().setAttrib( lAttrib )
    
    #This section deals with adding a specular highlight to the ball to make
    #it look shiny
    m = Material()
    m.setSpecular(Vec4(1,1,1,1))
    m.setShininess(96)
    self.ball.setMaterial(m, 1)

    #Finally, we call start for more initialization
    self.start()
Example #3
0
    def __init__(self):
        #This code puts the standard title and instruction text on screen
        self.title = OnscreenText(
            text="Panda3D: Tutorial - Collision Detection",
            style=1,
            fg=(1, 1, 1, 1),
            pos=(0.7, -0.95),
            scale=.07,
            font=font)
        self.instructions = OnscreenText(text="Mouse pointer tilts the board",
                                         pos=(-1.3, .95),
                                         fg=(1, 1, 1, 1),
                                         font=font,
                                         align=TextNode.ALeft,
                                         scale=.05)

        self.accept("escape", sys.exit)  #Escape quits
        base.disableMouse()  #Disable mouse-based camera control
        camera.setPosHpr(0, 0, 25, 0, -90, 0)  #Place the camera

        #Load the maze and place it in the scene
        self.maze = loader.loadModel("models/samples/ball_in_maze/maze")
        self.maze.reparentTo(render)

        #Most times, you want collisions to be tested against invisible geometry
        #rather than every polygon. This is because testing against every polygon
        #in the scene is usually too slow. You can have simplified or approximate
        #geometry for the solids and still get good results.
        #
        #Sometimes you'll want to create and position your own collision solids in
        #code, but it's often easier to have them built automatically. This can be
        #done by adding special tags into an egg file. Check maze.egg and ball.egg
        #and look for lines starting with <Collide>. The part is brackets tells
        #Panda exactly what to do. Polyset means to use the polygons in that group
        #as solids, while Sphere tells panda to make a collision sphere around them
        #Keep means to keep the polygons in the group as visable geometry (good
        #for the ball, not for the triggers), and descend means to make sure that
        #the settings are applied to any subgroups.
        #
        #Once we have the collision tags in the models, we can get to them using
        #NodePath's find command

        #Find the collision node named wall_collide
        self.walls = self.maze.find("**/wall_collide")

        #Collision objects are sorted using BitMasks. BitMasks are ordinary numbers
        #with extra methods for working with them as binary bits. Every collision
        #solid has both a from mask and an into mask. Before Panda tests two
        #objects, it checks to make sure that the from and into collision masks
        #have at least one bit in common. That way things that shouldn't interact
        #won't. Normal model nodes have collision masks as well. By default they
        #are set to bit 20. If you want to collide against actual visable polygons,
        #set a from collide mask to include bit 20
        #
        #For this example, we will make everything we want the ball to collide with
        #include bit 0
        self.walls.node().setIntoCollideMask(BitMask32.bit(0))
        #CollisionNodes are usually invisible but can be shown. Uncomment the next
        #line to see the collision walls
        #self.walls.show()

        #We will now find the triggers for the holes and set their masks to 0 as
        #well. We also set their names to make them easier to identify during
        #collisions
        self.loseTriggers = []
        for i in range(6):
            trigger = self.maze.find("**/hole_collide" + str(i))
            trigger.node().setIntoCollideMask(BitMask32.bit(0))
            trigger.node().setName("loseTrigger")
            self.loseTriggers.append(trigger)
            #Uncomment this line to see the triggers
            #trigger.show()

        #Ground_collide is a single polygon on the same plane as the ground in the
        #maze. We will use a ray to collide with it so that we will know exactly
        #what height to put the ball at every frame. Since this is not something
        #that we want the ball itself to collide with, it has a different
        #bitmask.
        self.mazeGround = self.maze.find("**/ground_collide")
        self.mazeGround.node().setIntoCollideMask(BitMask32.bit(1))

        #Load the ball and attach it to the scene
        #It is on a root dummy node so that we can rotate the ball itself without
        #rotating the ray that will be attached to it
        self.ballRoot = render.attachNewNode("ballRoot")
        self.ball = loader.loadModel("models/samples/ball_in_maze/ball")
        self.ball.reparentTo(self.ballRoot)

        #Find the collison sphere for the ball which was created in the egg file
        #Notice that it has a from collision mask of bit 0, and an into collison
        #mask of no bits. This means that the ball can only cause collisions, not
        #be collided into
        self.ballSphere = self.ball.find("**/ball")
        self.ballSphere.node().setFromCollideMask(BitMask32.bit(0))
        self.ballSphere.node().setIntoCollideMask(BitMask32.allOff())

        #No we create a ray to start above the ball and cast down. This is to
        #Determine the height the ball should be at and the angle the floor is
        #tilting. We could have used the sphere around the ball itself, but it
        #would not be as reliable
        self.ballGroundRay = CollisionRay()  #Create the ray
        self.ballGroundRay.setOrigin(0, 0, 10)  #Set its origin
        self.ballGroundRay.setDirection(0, 0, -1)  #And its direction
        #Collision solids go in CollisionNode
        self.ballGroundCol = CollisionNode(
            'groundRay')  #Create and name the node
        self.ballGroundCol.addSolid(self.ballGroundRay)  #Add the ray
        self.ballGroundCol.setFromCollideMask(
            BitMask32.bit(1))  #Set its bitmasks
        self.ballGroundCol.setIntoCollideMask(BitMask32.allOff())
        #Attach the node to the ballRoot so that the ray is relative to the ball
        #(it will always be 10 feet over the ball and point down)
        self.ballGroundColNp = self.ballRoot.attachNewNode(self.ballGroundCol)
        #Uncomment this line to see the ray
        #self.ballGroundColNp.show()

        #Finally, we create a CollisionTraverser. CollisionTraversers are what
        #do the job of calculating collisions
        self.cTrav = CollisionTraverser()
        #Collision traverservs tell collision handlers about collisions, and then
        #the handler decides what to do with the information. We are using a
        #CollisionHandlerQueue, which simply creates a list of all of the
        #collisions in a given pass. There are more sophisticated handlers like
        #one that sends events and another that tries to keep collided objects
        #apart, but the results are often better with a simple queue
        self.cHandler = CollisionHandlerQueue()
        #Now we add the collision nodes that can create a collision to the
        #traverser. The traverser will compare these to all others nodes in the
        #scene. There is a limit of 32 CollisionNodes per traverser
        #We add the collider, and the handler to use as a pair
        self.cTrav.addCollider(self.ballSphere, self.cHandler)
        self.cTrav.addCollider(self.ballGroundColNp, self.cHandler)

        #Collision traversers have a built in tool to help visualize collisions.
        #Uncomment the next line to see it.
        #self.cTrav.showCollisions(render)

        #This section deals with lighting for the ball. Only the ball was lit
        #because the maze has static lighting pregenerated by the modeler
        lAttrib = LightAttrib.makeAllOff()
        ambientLight = AmbientLight("ambientLight")
        ambientLight.setColor(Vec4(.55, .55, .55, 1))
        lAttrib = lAttrib.addLight(ambientLight)
        directionalLight = DirectionalLight("directionalLight")
        directionalLight.setDirection(Vec3(0, 0, -1))
        directionalLight.setColor(Vec4(0.375, 0.375, 0.375, 1))
        directionalLight.setSpecularColor(Vec4(1, 1, 1, 1))
        lAttrib = lAttrib.addLight(directionalLight)
        self.ballRoot.node().setAttrib(lAttrib)

        #This section deals with adding a specular highlight to the ball to make
        #it look shiny
        m = Material()
        m.setSpecular(Vec4(1, 1, 1, 1))
        m.setShininess(96)
        self.ball.setMaterial(m, 1)

        #Finally, we call start for more initialization
        self.start()
Example #4
0
    def __init__(self):

        self.keyMap = {
            "left": 0,
            "right": 0,
            "forward": 0,
            "cam-left": 0,
            "cam-right": 0
        }
        base.win.setClearColor(Vec4(0, 0, 0, 1))

        # Post the instructions

        self.title = addTitle(
            "Panda3D Tutorial: Roaming Ralph (Walking on Uneven Terrain)")
        self.inst1 = addInstructions(0.95, "[ESC]: Quit")
        self.inst2 = addInstructions(0.90, "[Left Arrow]: Rotate Ralph Left")
        self.inst3 = addInstructions(0.85, "[Right Arrow]: Rotate Ralph Right")
        self.inst4 = addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        self.inst6 = addInstructions(0.70, "[A]: Rotate Camera Left")
        self.inst7 = addInstructions(0.65, "[S]: Rotate Camera Right")

        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.

        self.environ = loader.loadModel("models/samples/roaming_ralph/world")
        self.environ.reparentTo(render)
        self.environ.setPos(0, 0, 0)

        # Create the main character, Ralph

        ralphStartPos = self.environ.find("**/start_point").getPos()
        self.ralph = Actor(
            "models/samples/roaming_ralph/ralph", {
                "run": "models/samples/roaming_ralph/ralph_run",
                "walk": "models/samples/roaming_ralph/ralph_walk"
            })
        self.ralph.reparentTo(render)
        self.ralph.setScale(.2)
        self.ralph.setPos(ralphStartPos)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.

        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("arrow_left", self.setKey, ["left", 1])
        self.accept("arrow_right", self.setKey, ["right", 1])
        self.accept("arrow_up", self.setKey, ["forward", 1])
        self.accept("a", self.setKey, ["cam-left", 1])
        self.accept("s", self.setKey, ["cam-right", 1])
        self.accept("arrow_left-up", self.setKey, ["left", 0])
        self.accept("arrow_right-up", self.setKey, ["right", 0])
        self.accept("arrow_up-up", self.setKey, ["forward", 0])
        self.accept("a-up", self.setKey, ["cam-left", 0])
        self.accept("s-up", self.setKey, ["cam-right", 0])

        taskMgr.add(self.move, "moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera

        base.disableMouse()
        base.camera.setPos(self.ralph.getX(), self.ralph.getY() + 10, 2)

        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0, 0, 1000)
        self.ralphGroundRay.setDirection(0, 0, -1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0, 0, 1000)
        self.camGroundRay.setDirection(0, 0, -1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)