def estimate(self,
                 v_start=None,
                 delta_start=None,
                 calculate_voltage_angles=True):
        """
        The function estimate is the main function of the module. It takes up to three input
        arguments: v_start, delta_start and calculate_voltage_angles. The first two are the initial
        state variables for the estimation process. Usually they can be initialized in a
        "flat-start" condition: All voltages being 1.0 pu and all voltage angles being 0 degrees.
        In this case, the parameters can be left at their default values (None). If the estimation
        is applied continuously, using the results from the last estimation as the starting
        condition for the current estimation can decrease the  amount of iterations needed to
        estimate the current state. The third parameter defines whether all voltage angles are
        calculated absolutely, including phase shifts from transformers. If only the relative
        differences between buses are required, this parameter can be set to False. Returned is a
        boolean value, which is true after a successful estimation and false otherwise.
        The resulting complex voltage will be written into the pandapower network. The result
        fields are found res_bus_est of the pandapower network.

        INPUT:
            **net** - The net within this line should be created

            **v_start** (np.array, shape=(1,), optional) - Vector with initial values for all
            voltage magnitudes in p.u. (sorted by bus index)

            **delta_start** (np.array, shape=(1,), optional) - Vector with initial values for all
            voltage angles in degrees (sorted by bus index)

        OPTIONAL:
            **calculate_voltage_angles** - (bool) - Take into account absolute voltage angles and
            phase shifts in transformers Default is True.

        OUTPUT:
            **successful** (boolean) - True if the estimation process was successful

        Optional estimation variables:
            The bus power injections can be accessed with *se.s_node_powers* and the estimated
            values corresponding to the (noisy) measurement values with *se.hx*. (*hx* denotes h(x))

        EXAMPLE:
            success = estimate(np.array([1.0, 1.0, 1.0]), np.array([0.0, 0.0, 0.0]))

        """
        if self.net is None:
            raise UserWarning("Component was not initialized with a network.")
        t0 = time()
        # add initial values for V and delta
        # node voltages
        # V<delta
        if v_start is None:
            v_start = np.ones(self.net.bus.shape[0])
        if delta_start is None:
            delta_start = np.zeros(self.net.bus.shape[0])

        # initialize result tables if not existent
        _copy_power_flow_results(self.net)

        # initialize ppc
        ppc, ppci = _init_ppc(self.net, v_start, delta_start,
                              calculate_voltage_angles)

        # add measurements to ppci structure
        ppci = _add_measurements_to_ppc(self.net, ppci, self.s_ref)

        # calculate relevant vectors from ppci measurements
        z, self.pp_meas_indices, r_cov = _build_measurement_vectors(ppci)

        # number of nodes
        n_active = len(np.where(ppci["bus"][:, 1] != 4)[0])
        slack_buses = np.where(ppci["bus"][:, 1] == 3)[0]

        # Check if observability criterion is fulfilled and the state estimation is possible
        if len(z) < 2 * n_active - 1:
            self.logger.error("System is not observable (cancelling)")
            self.logger.error(
                "Measurements available: %d. Measurements required: %d" %
                (len(z), 2 * n_active - 1))
            return False

        # set the starting values for all active buses
        v_m = ppci["bus"][:, 7]
        delta = ppci["bus"][:, 8] * np.pi / 180  # convert to rad
        delta_masked = np.ma.array(delta, mask=False)
        delta_masked.mask[slack_buses] = True
        non_slack_buses = np.arange(len(delta))[~delta_masked.mask]

        # matrix calculation object
        sem = wls_matrix_ops(ppci, slack_buses, non_slack_buses, self.s_ref)

        # state vector
        E = np.concatenate((delta_masked.compressed(), v_m))

        # invert covariance matrix
        r_inv = csr_matrix(np.linalg.inv(np.diagflat(r_cov)**2))

        current_error = 100.
        cur_it = 0
        G_m, r, H, h_x = None, None, None, None

        while current_error > self.tolerance and cur_it < self.max_iterations:
            self.logger.debug(" Starting iteration %d" % (1 + cur_it))
            try:
                # create h(x) for the current iteration
                h_x = sem.create_hx(v_m, delta)

                # residual r
                r = csr_matrix(z - h_x).T

                # jacobian matrix H
                H = csr_matrix(sem.create_jacobian(v_m, delta))

                # gain matrix G_m
                # G_m = H^t * R^-1 * H
                G_m = H.T * (r_inv * H)

                # state vector difference d_E
                # d_E = G_m^-1 * (H' * R^-1 * r)
                d_E = spsolve(G_m, H.T * (r_inv * r))
                E += d_E

                # update V/delta
                delta[non_slack_buses] = E[:len(non_slack_buses)]
                v_m = np.squeeze(E[len(non_slack_buses):])

                # prepare next iteration
                cur_it += 1
                current_error = np.max(np.abs(d_E))
                self.logger.debug("Current error: %.7f" % current_error)

            except np.linalg.linalg.LinAlgError:
                self.logger.error(
                    "A problem appeared while using the linear algebra methods."
                    "Check and change the measurement set.")
                return False

        # print output for results
        if current_error <= self.tolerance:
            successful = True
            self.logger.debug(
                "WLS State Estimation successful (%d iterations)" % cur_it)
        else:
            successful = False
            self.logger.debug(
                "WLS State Estimation not successful (%d/%d iterations)" %
                (cur_it, self.max_iterations))

        # store results for all elements
        # calculate bus power injections
        v_cpx = v_m * np.exp(1j * delta)
        bus_powers_conj = np.zeros(len(v_cpx), dtype=np.complex128)
        for i in range(len(v_cpx)):
            bus_powers_conj[i] = np.dot(sem.Y_bus[i, :], v_cpx) * np.conjugate(
                v_cpx[i])

        ppci["bus"][:, 2] = bus_powers_conj.real  # saved in per unit
        ppci["bus"][:, 3] = -bus_powers_conj.imag  # saved in per unit
        ppci["bus"][:, 7] = v_m
        ppci["bus"][:, 8] = delta * 180 / np.pi  # convert to degree

        # calculate line results (in ppc_i)
        s_ref, bus, gen, branch = _get_pf_variables_from_ppci(ppci)[0:4]
        out = np.flatnonzero(branch[:,
                                    BR_STATUS] == 0)  # out-of-service branches
        br = np.flatnonzero(branch[:, BR_STATUS]).astype(
            int)  # in-service branches
        # complex power at "from" bus
        Sf = v_cpx[np.real(branch[br, F_BUS]).astype(int)] * np.conj(
            sem.Yf[br, :] * v_cpx) * s_ref
        # complex power injected at "to" bus
        St = v_cpx[np.real(branch[br, T_BUS]).astype(int)] * np.conj(
            sem.Yt[br, :] * v_cpx) * s_ref
        branch[np.ix_(br, [PF, QF, PT, QT])] = np.c_[Sf.real, Sf.imag, St.real,
                                                     St.imag]
        branch[np.ix_(out, [PF, QF, PT, QT])] = np.zeros((len(out), 4))
        et = time() - t0
        ppci = _store_results_from_pf_in_ppci(ppci, bus, gen, branch,
                                              successful, cur_it, et)

        # convert to pandapower indices
        ppc = _copy_results_ppci_to_ppc(ppci, ppc, mode="se")

        # extract results from ppc
        _add_pf_options(self.net,
                        tolerance_kva=1e-5,
                        trafo_loading="current",
                        numba=True,
                        ac=True,
                        algorithm='nr',
                        max_iteration="auto")
        # writes res_bus.vm_pu / va_degree and res_line
        _extract_results_se(self.net, ppc)

        # restore backup of previous results
        _rename_results(self.net)

        # additionally, write bus power injection results (these are not written in _extract_results)
        mapping_table = self.net["_pd2ppc_lookups"]["bus"]
        self.net.res_bus_est.p_kw = -get_values(
            ppc["bus"][:, 2], self.net.bus.index.values,
            mapping_table) * self.s_ref / 1e3
        self.net.res_bus_est.q_kvar = -get_values(
            ppc["bus"][:, 3], self.net.bus.index.values,
            mapping_table) * self.s_ref / 1e3

        # store variables required for chi^2 and r_N_max test:
        self.R_inv = r_inv.toarray()
        self.Gm = G_m.toarray()
        self.r = r.toarray()
        self.H = H.toarray()
        self.Ht = self.H.T
        self.hx = h_x
        self.V = v_m
        self.delta = delta

        # delete results which are not correctly calculated
        for k in list(self.net.keys()):
            if k.startswith("res_") and k.endswith("_est") and \
                    k not in ("res_bus_est", "res_line_est", "res_trafo_est", "res_trafo3w_est"):
                del self.net[k]

        return successful
Example #2
0
    def estimate(self,
                 v_start='flat',
                 delta_start='flat',
                 calculate_voltage_angles=True,
                 zero_injection=None,
                 fuse_buses_with_bb_switch='all'):
        """
        The function estimate is the main function of the module. It takes up to three input
        arguments: v_start, delta_start and calculate_voltage_angles. The first two are the initial
        state variables for the estimation process. Usually they can be initialized in a
        "flat-start" condition: All voltages being 1.0 pu and all voltage angles being 0 degrees.
        In this case, the parameters can be left at their default values (None). If the estimation
        is applied continuously, using the results from the last estimation as the starting
        condition for the current estimation can decrease the  amount of iterations needed to
        estimate the current state. The third parameter defines whether all voltage angles are
        calculated absolutely, including phase shifts from transformers. If only the relative
        differences between buses are required, this parameter can be set to False. Returned is a
        boolean value, which is true after a successful estimation and false otherwise.
        The resulting complex voltage will be written into the pandapower network. The result
        fields are found res_bus_est of the pandapower network.

        INPUT:
            **net** - The net within this line should be created

            **v_start** (np.array, shape=(1,), optional) - Vector with initial values for all
            voltage magnitudes in p.u. (sorted by bus index)

            **delta_start** (np.array, shape=(1,), optional) - Vector with initial values for all
            voltage angles in degrees (sorted by bus index)

        OPTIONAL:
            **calculate_voltage_angles** - (bool) - Take into account absolute voltage angles and
            phase shifts in transformers Default is True
            
            **zero_injection** - (str, iterable, None) - Defines which buses are zero injection bus or the method
            to identify zero injection bus, with 'wls_estimator' virtual measurements will be added, with 
            'wls_estimator with zero constraints' the buses will be handled as constraints
            "auto": all bus without p,q measurement, without p, q value (load, sgen...) and aux buses will be
                identified as zero injection bus  
            "aux_bus": only aux bus will be identified as zero injection bus
            None: no bus will be identified as zero injection bus
            iterable: the iterable should contain index of the zero injection bus and also aux bus will be identified
                as zero-injection bus
    
            **fuse_buses_with_bb_switch** - (str, iterable, None) - Defines how buses with closed bb switches should 
            be handled, if fuse buses will only fused to one for calculation, if not fuse, an auxiliary bus and 
            auxiliary line will be automatically added to the network to make the buses with different p,q injection
            measurements identifieble
            "all": all buses with bb-switches will be fused, the same as the default behaviour in load flow
            None: buses with bb-switches and individual p,q measurements will be reconfigurated
                by auxiliary elements
            iterable: the iterable should contain the index of buses to be fused, the behaviour is contigous e.g.
                if one of the bus among the buses connected through bb switch is given, then all of them will still
                be fused
        OUTPUT:
            **successful** (boolean) - True if the estimation process was successful

        Optional estimation variables:
            The bus power injections can be accessed with *se.s_node_powers* and the estimated
            values corresponding to the (noisy) measurement values with *se.hx*. (*hx* denotes h(x))

        EXAMPLE:
            success = estimate(np.array([1.0, 1.0, 1.0]), np.array([0.0, 0.0, 0.0]))

        """
        if self.net is None:
            raise UserWarning("Component was not initialized with a network.")
        t0 = time()

        # change the configuration of the pp net to avoid auto fusing of buses connected
        # through bb switch with elements on each bus if this feature enabled
        bus_to_be_fused = None
        if fuse_buses_with_bb_switch != 'all' and not self.net.switch.empty:
            if isinstance(fuse_buses_with_bb_switch, str):
                raise UserWarning(
                    "fuse_buses_with_bb_switch parameter is not correctly initialized"
                )
            elif hasattr(fuse_buses_with_bb_switch, '__iter__'):
                bus_to_be_fused = fuse_buses_with_bb_switch
            _add_aux_elements_for_bb_switch(self.net, bus_to_be_fused)

        # add initial values for V and delta
        # node voltages
        # V<delta
        if v_start is None:
            v_start = "flat"
        if delta_start is None:
            delta_start = "flat"

        # initialize result tables if not existent
        _copy_power_flow_results(self.net)

        # initialize ppc
        ppc, ppci = _init_ppc(self.net, v_start, delta_start,
                              calculate_voltage_angles)

        # add measurements to ppci structure
        ppci = _add_measurements_to_ppc(self.net, ppci, zero_injection)

        # Finished converting pandapower network to ppci
        # Estimate voltage magnitude and angle with the given estimator
        delta, v_m = self.estimator.estimate(ppci)

        # store results for all elements
        # calculate bus power injections
        v_cpx = v_m * np.exp(1j * delta)
        bus_powers_conj = np.zeros(len(v_cpx), dtype=np.complex128)
        for i in range(len(v_cpx)):
            bus_powers_conj[i] = np.dot(ppci['internal']['Y_bus'][i, :],
                                        v_cpx) * np.conjugate(v_cpx[i])

        ppci["bus"][:, 2] = bus_powers_conj.real  # saved in per unit
        ppci["bus"][:, 3] = -bus_powers_conj.imag  # saved in per unit
        ppci["bus"][:, 7] = v_m
        ppci["bus"][:, 8] = delta * 180 / np.pi  # convert to degree

        # calculate line results (in ppc_i)
        s_ref, bus, gen, branch = _get_pf_variables_from_ppci(ppci)[0:4]
        out = np.flatnonzero(branch[:,
                                    BR_STATUS] == 0)  # out-of-service branches
        br = np.flatnonzero(branch[:, BR_STATUS]).astype(
            int)  # in-service branches
        # complex power at "from" bus
        Sf = v_cpx[np.real(branch[br, F_BUS]).astype(int)] * np.conj(
            ppci['internal']['Yf'][br, :] * v_cpx) * s_ref
        # complex power injected at "to" bus
        St = v_cpx[np.real(branch[br, T_BUS]).astype(int)] * np.conj(
            ppci['internal']['Yt'][br, :] * v_cpx) * s_ref
        branch[np.ix_(br, [PF, QF, PT, QT])] = np.c_[Sf.real, Sf.imag, St.real,
                                                     St.imag]
        branch[np.ix_(out, [PF, QF, PT, QT])] = np.zeros((len(out), 4))
        et = time() - t0
        ppci = _store_results_from_pf_in_ppci(ppci, bus, gen, branch,
                                              self.estimator.successful,
                                              self.estimator.iterations, et)

        # convert to pandapower indices
        ppc = _copy_results_ppci_to_ppc(ppci, ppc, mode="se")

        # extract results from ppc
        _add_pf_options(self.net,
                        tolerance_mva=1e-8,
                        trafo_loading="current",
                        numba=True,
                        ac=True,
                        algorithm='nr',
                        max_iteration="auto")
        # writes res_bus.vm_pu / va_degree and res_line
        _extract_results_se(self.net, ppc)

        # restore backup of previous results
        _rename_results(self.net)

        # additionally, write bus power injection results (these are not written in _extract_results)
        mapping_table = self.net["_pd2ppc_lookups"]["bus"]
        self.net.res_bus_est.p_mw = -get_values(
            ppc["bus"][:, 2], self.net.bus.index.values, mapping_table)
        self.net.res_bus_est.q_mvar = -get_values(
            ppc["bus"][:, 3], self.net.bus.index.values, mapping_table)
        _clean_up(self.net)
        # clear the aux elements and calculation results created for the substitution of bb switches
        if fuse_buses_with_bb_switch != 'all' and not self.net.switch.empty:
            _drop_aux_elements_for_bb_switch(self.net)

        # delete results which are not correctly calculated
        for k in list(self.net.keys()):
            if k.startswith("res_") and k.endswith("_est") and \
                    k not in ("res_bus_est", "res_line_est", "res_trafo_est", "res_trafo3w_est"):
                del self.net[k]

        return self.estimator.successful