Example #1
0
def test_ctrl_unconverged(net):
    output_writer = OutputWriter(net, time_steps=[0, 1])

    class DivergentController(Controller):
        def __init__(self, net):
            super().__init__(net)

        def time_step(self, time):
            self.convergent = True if time % 2 == 0 else False

        def is_converged(self):
            return self.convergent

    DivergentController(net)

    with pytest.raises(ct.ControllerNotConverged):
        run_timeseries(net,
                       time_steps=range(0, 3),
                       output_writer=output_writer,
                       max_iter=3)

    # assert no exceptions but appropriate output in outputwriter
    run_timeseries(net,
                   time_steps=range(0, 3),
                   output_writer=output_writer,
                   max_iter=3,
                   continue_on_divergence=True)

    for i, out in enumerate(
            output_writer.output["Parameters"].controller_unstable):
        if i % 2 == 0:
            assert not out
        else:
            assert out
Example #2
0
def init_default_outputwriter(net, time_steps, **kwargs):
    """
    Initializes the output writer. If output_writer is None, default output_writer is created

    INPUT:
        **net** - The pandapower format network

        **time_steps** (list) - time steps to be calculated

    """
    output_writer = kwargs.get("output_writer", None)
    if output_writer is not None:
        # write the output_writer to net
        logger.warning("deprecated: output_writer should not be given to run_timeseries(). "
                       "This overwrites the stored one in net.output_writer.")
        net.output_writer.iat[0, 0] = output_writer
    if "output_writer" not in net or net.output_writer.iat[0, 0] is None:
        # create a default output writer for this net
        ow = OutputWriter(net, time_steps, output_path=tempfile.gettempdir())
        logger.info("No output writer specified. Using default:")
        logger.info(ow)
Example #3
0
def init_default_outputwriter(net, time_steps, **kwargs):
    """
    Creates a default output writer for the time series calculation.

    :param net: The pandapipes format network
    :type net: pandapipesNet
    :param time_steps: Time steps to calculate as list
    :type time_steps: list
    :return: ow - The default output writer
    :rtype: pandapower.timeseries.output_writer.OutputWriter
    """
    output_writer = kwargs.get("output_writer", None)
    if output_writer is not None:
        # write the output_writer to net
        logger.warning(
            "deprecated: output_writer should not be given to run_timeseries(). "
            "This overwrites the stored one in net.output_writer.")
        net.output_writer.iat[0, 0] = output_writer
    if "output_writer" not in net or net.output_writer.iat[0, 0] is None:
        ow = OutputWriter(net,
                          time_steps,
                          output_path=tempfile.gettempdir(),
                          log_variables=[])
        ow.log_variable('res_sink', 'mdot_kg_per_s')
        ow.log_variable('res_source', 'mdot_kg_per_s')
        ow.log_variable('res_ext_grid', 'mdot_kg_per_s')
        ow.log_variable('res_pipe', 'v_mean_m_per_s')
        ow.log_variable('res_junction', 'p_bar')
        ow.log_variable('res_junction', 't_k')
        logger.info("No output writer specified. Using default:")
        logger.info(ow)
Example #4
0
def get_default_output_writer_ppipe(net, timesteps):
    """
    Creates a default output writer for the time series calculation.

    :param net: The pandapipes format network
    :type net: pandapipesNet
    :param timesteps: timesteps to calculate as list
    :type timesteps: list
    :return: output_writer - The default output_writer
    :rtype: ?
    """

    ow = OutputWriter(net,
                      timesteps,
                      output_path=tempfile.gettempdir(),
                      log_variables=[])
    ow.log_variable('res_sink', 'mdot_kg_per_s')
    ow.log_variable('res_source', 'mdot_kg_per_s')
    ow.log_variable('res_ext_grid', 'mdot_kg_per_s')
    ow.log_variable('res_pipe', 'v_mean_m_per_s')
    ow.log_variable('res_junction', 'p_bar')
    ow.log_variable('res_junction', 't_k')
    return ow
Example #5
0
def test_time_series_p2g_control(get_gas_example, get_power_example_simple):
    net_gas = get_gas_example
    net_power = get_power_example_simple

    pandapipes.create_source(net_gas, 5, 0.003)
    pandapipes.create_sink(net_gas, 3, 0.003)
    pandapipes.create_sink(net_gas, 4, 0.003)

    pandapower.create_load(net_power, 6, 0.004)
    pandapower.create_load(net_power, 5, 0.004)
    pandapower.create_sgen(net_power, 4, 0.004)

    mn = create_empty_multinet('coupled net')

    add_nets_to_multinet(mn, power=net_power, gas=net_gas)

    data_p2g_power = pd.DataFrame(np.concatenate(
        [np.array([1.0] * 5),
         np.array([0.75] * 2),
         np.array([1.0] * 3)]),
                                  columns=['load_p2g_power'])
    data_const_load = pd.DataFrame(np.concatenate(
        [np.array([1.2] * 5),
         np.array([1.75] * 2),
         np.array([1.2] * 3)]),
                                   columns=['load_const'])
    data_const_sgen = pd.DataFrame(np.concatenate(
        [np.array([0.8] * 5),
         np.array([0.9] * 2),
         np.array([0.8] * 3)]),
                                   columns=['sgen_const'])
    data_const_sink = np.zeros([10, 2])
    data_const_sink[:5, :] = [0.6, 0.4]
    data_const_sink[5:7, :] = [1.2, 0.3]
    data_const_sink[7:, :] = [0.6, 0.4]
    data_const_sink = pd.DataFrame(data_const_sink,
                                   columns=['sink_const_0', 'sink_const_1'])

    ds = DFData(data_p2g_power)
    _, p2g = coupled_p2g_const_control(mn,
                                       0,
                                       0,
                                       0.6,
                                       initial_run=True,
                                       profile_name='load_p2g_power',
                                       data_source=ds)
    ds = DFData(data_const_sink)
    ConstControl(net_gas,
                 'sink',
                 'mdot_kg_per_s', [0, 1],
                 profile_name=['sink_const_0', 'sink_const_1'],
                 data_source=ds)
    ds = DFData(data_const_load)
    ConstControl(net_power,
                 'load',
                 'p_mw',
                 1,
                 profile_name=['load_const'],
                 data_source=ds)
    ds = DFData(data_const_sgen)
    ConstControl(net_power,
                 'sgen',
                 'p_mw',
                 0,
                 profile_name=['sgen_const'],
                 data_source=ds)

    log_variables = [('res_source', 'mdot_kg_per_s'),
                     ('res_sink', 'mdot_kg_per_s')]

    ow_gas = OutputWriter(net_gas, range(10), log_variables=log_variables)

    log_variables = [('res_load', 'p_mw'), ('res_sgen', 'p_mw')]

    ow_power = OutputWriter(net_power, range(10), log_variables=log_variables)
    run_timeseries(mn, range(10))

    gas_res = ow_gas.np_results
    power_res = ow_power.np_results
    assert np.all(gas_res['res_sink.mdot_kg_per_s'] == data_const_sink.values)
    assert np.all(gas_res['res_source.mdot_kg_per_s'] == data_p2g_power.values * \
                  p2g.conversion_factor_mw_to_kgps() * p2g.efficiency)
    assert np.all(power_res['res_load.p_mw'][:, 1] == data_const_load.values.T)
    assert np.all(power_res['res_sgen.p_mw'] == data_const_sgen.values)