Example #1
0
def test_notna_notnull(notna_f):
    assert notna_f(1.)
    assert not notna_f(None)
    assert not notna_f(np.NaN)

    with cf.option_context("mode.use_inf_as_na", False):
        assert notna_f(np.inf)
        assert notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_na", True):
        assert not notna_f(np.inf)
        assert not notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.sum() == 2

    with cf.option_context("mode.use_inf_as_na", False):
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert (isinstance(notna_f(s), Series))
Example #2
0
def test_notna_notnull(notna_f):
    assert notna_f(1.0)
    assert not notna_f(None)
    assert not notna_f(np.NaN)

    with cf.option_context("mode.use_inf_as_na", False):
        assert notna_f(np.inf)
        assert notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_na", True):
        assert not notna_f(np.inf)
        assert not notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.sum() == 2

    with cf.option_context("mode.use_inf_as_na", False):
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries(),
                tm.makeTimeSeries(),
                tm.makePeriodSeries(),
        ]:
            assert isinstance(notna_f(s), Series)
Example #3
0
    def test_matplotlib_formatters(self):
        units = pytest.importorskip("matplotlib.units")

        # Can't make any assertion about the start state.
        # We we check that toggling converters off remvoes it, and toggling it
        # on restores it.

        with cf.option_context("plotting.matplotlib.register_converters", True):
            with cf.option_context("plotting.matplotlib.register_converters", False):
                assert Timestamp not in units.registry
            assert Timestamp in units.registry
Example #4
0
    def test_display_max_dir_items(self):
        # display.max_dir_items increaes the number of columns that are in __dir__.
        columns = ["a" + str(i) for i in range(420)]
        values = [range(420), range(420)]
        df = DataFrame(values, columns=columns)

        # The default value for display.max_dir_items is 100
        assert "a99" in dir(df)
        assert "a100" not in dir(df)

        with option_context("display.max_dir_items", 300):
            df = DataFrame(values, columns=columns)
            assert "a299" in dir(df)
            assert "a300" not in dir(df)

        with option_context("display.max_dir_items", None):
            df = DataFrame(values, columns=columns)
            assert "a419" in dir(df)
Example #5
0
    def test_matplotlib_formatters(self):
        units = pytest.importorskip("matplotlib.units")
        assert Timestamp in units.registry

        ctx = cf.option_context("plotting.matplotlib.register_converters",
                                False)
        with ctx:
            assert Timestamp not in units.registry

        assert Timestamp in units.registry
Example #6
0
    def test_matplotlib_formatters(self):
        units = pytest.importorskip("matplotlib.units")
        assert Timestamp in units.registry

        ctx = cf.option_context("plotting.matplotlib.register_converters",
                                False)
        with ctx:
            assert Timestamp not in units.registry

        assert Timestamp in units.registry
Example #7
0
def test_notna_notnull(notna_f):
    assert notna_f(1.0)
    assert not notna_f(None)
    assert not notna_f(np.NaN)

    with cf.option_context("mode.use_inf_as_na", False):
        assert notna_f(np.inf)
        assert notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_na", True):
        assert not notna_f(np.inf)
        assert not notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.sum() == 2
Example #8
0
    def test_ambiguous_width(self):
        adj = fmt.EastAsianTextAdjustment()
        assert adj.len("¡¡ab") == 4

        with cf.option_context("display.unicode.ambiguous_as_wide", True):
            adj = fmt.EastAsianTextAdjustment()
            assert adj.len("¡¡ab") == 6

        data = [["あ", "b", "c"], ["dd", "ええ", "ff"], ["ggg", "¡¡ab", "いいい"]]
        expected = "あ  dd    ggg \nb   ええ  ¡¡ab\nc   ff    いいい"
        adjoined = adj.adjoin(2, *data)
        assert adjoined == expected
Example #9
0
    def test_ambiguous_width(self):
        adj = fmt.EastAsianTextAdjustment()
        assert adj.len('¡¡ab') == 4

        with cf.option_context('display.unicode.ambiguous_as_wide', True):
            adj = fmt.EastAsianTextAdjustment()
            assert adj.len('¡¡ab') == 6

        data = [['あ', 'b', 'c'], ['dd', 'ええ', 'ff'], ['ggg', '¡¡ab', 'いいい']]
        expected = 'あ  dd    ggg \nb   ええ  ¡¡ab\nc   ff    いいい'
        adjoined = adj.adjoin(2, *data)
        assert adjoined == expected
Example #10
0
    def test_ambiguous_width(self):
        adj = fmt.EastAsianTextAdjustment()
        assert adj.len('¡¡ab') == 4

        with cf.option_context('display.unicode.ambiguous_as_wide', True):
            adj = fmt.EastAsianTextAdjustment()
            assert adj.len('¡¡ab') == 6

        data = [['あ', 'b', 'c'], ['dd', 'ええ', 'ff'],
                ['ggg', '¡¡ab', 'いいい']]
        expected = 'あ  dd    ggg \nb   ええ  ¡¡ab\nc   ff    いいい'
        adjoined = adj.adjoin(2, *data)
        assert adjoined == expected
    def test_isna_old_datetimelike(self):
        # isna_old should work for dt64tz, td64, and period, not just tznaive
        dti = pd.date_range("2016-01-01", periods=3)
        dta = dti._data
        dta[-1] = pd.NaT
        expected = np.array([False, False, True], dtype=bool)

        objs = [dta, dta.tz_localize("US/Eastern"), dta - dta, dta.to_period("D")]

        for obj in objs:
            with cf.option_context("mode.use_inf_as_na", True):
                result = pd.isna(obj)

            tm.assert_numpy_array_equal(result, expected)
Example #12
0
    def test_option_no_warning(self):
        pytest.importorskip("matplotlib.pyplot")
        ctx = cf.option_context("plotting.matplotlib.register_converters", False)
        plt = pytest.importorskip("matplotlib.pyplot")
        s = Series(range(12), index=date_range("2017", periods=12))
        _, ax = plt.subplots()

        # Test without registering first, no warning
        with ctx:
            ax.plot(s.index, s.values)

        # Now test with registering
        register_matplotlib_converters()
        with ctx:
            ax.plot(s.index, s.values)
    def test_option_no_warning(self):
        pytest.importorskip("matplotlib.pyplot")
        ctx = cf.option_context("plotting.matplotlib.register_converters", False)
        plt = pytest.importorskip("matplotlib.pyplot")
        s = Series(range(12), index=date_range("2017", periods=12))
        _, ax = plt.subplots()

        # Test without registering first, no warning
        with ctx:
            # GH#30588 DeprecationWarning from 2D indexing on Index
            with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False):
                ax.plot(s.index, s.values)

        # Now test with registering
        register_matplotlib_converters()
        with ctx:
            with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False):
                ax.plot(s.index, s.values)
Example #14
0
    def test_option_no_warning(self):
        pytest.importorskip("matplotlib.pyplot")
        ctx = cf.option_context("plotting.matplotlib.register_converters",
                                False)
        plt = pytest.importorskip("matplotlib.pyplot")
        s = Series(range(12), index=date_range('2017', periods=12))
        _, ax = plt.subplots()

        converter._WARN = True
        # Test without registering first, no warning
        with ctx:
            with tm.assert_produces_warning(None) as w:
                ax.plot(s.index, s.values)

        assert len(w) == 0

        # Now test with registering
        converter._WARN = True
        register_matplotlib_converters()
        with ctx:
            with tm.assert_produces_warning(None) as w:
                ax.plot(s.index, s.values)

        assert len(w) == 0
Example #15
0
    def test_option_no_warning(self):
        pytest.importorskip("matplotlib.pyplot")
        ctx = cf.option_context("plotting.matplotlib.register_converters",
                                False)
        plt = pytest.importorskip("matplotlib.pyplot")
        s = Series(range(12), index=date_range("2017", periods=12))
        _, ax = plt.subplots()

        converter._WARN = True
        # Test without registering first, no warning
        with ctx:
            with tm.assert_produces_warning(None) as w:
                ax.plot(s.index, s.values)

        assert len(w) == 0

        # Now test with registering
        converter._WARN = True
        register_matplotlib_converters()
        with ctx:
            with tm.assert_produces_warning(None) as w:
                ax.plot(s.index, s.values)

        assert len(w) == 0
Example #16
0
    def test_string_categorical_index_repr(self):
        # short
        idx = pd.CategoricalIndex(["a", "bb", "ccc"])
        expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')"""  # noqa
        assert repr(idx) == expected

        # multiple lines
        idx = pd.CategoricalIndex(["a", "bb", "ccc"] * 10)
        expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
                  'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb',
                  'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
                 categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # truncated
        idx = pd.CategoricalIndex(["a", "bb", "ccc"] * 100)
        expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
                  ...
                  'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
                 categories=['a', 'bb', 'ccc'], ordered=False, dtype='category', length=300)"""  # noqa

        assert repr(idx) == expected

        # larger categories
        idx = pd.CategoricalIndex(list("abcdefghijklmmo"))
        expected = """CategoricalIndex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
                  'm', 'm', 'o'],
                 categories=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', ...], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # short
        idx = pd.CategoricalIndex(["あ", "いい", "ううう"])
        expected = """CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa
        assert repr(idx) == expected

        # multiple lines
        idx = pd.CategoricalIndex(["あ", "いい", "ううう"] * 10)
        expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ',
                  'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # truncated
        idx = pd.CategoricalIndex(["あ", "いい", "ううう"] * 100)
        expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ',
                  ...
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)"""  # noqa

        assert repr(idx) == expected

        # larger categories
        idx = pd.CategoricalIndex(list("あいうえおかきくけこさしすせそ"))
        expected = """CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し',
                  'す', 'せ', 'そ'],
                 categories=['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', ...], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # Emable Unicode option -----------------------------------------
        with cf.option_context("display.unicode.east_asian_width", True):

            # short
            idx = pd.CategoricalIndex(["あ", "いい", "ううう"])
            expected = """CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa
            assert repr(idx) == expected

            # multiple lines
            idx = pd.CategoricalIndex(["あ", "いい", "ううう"] * 10)
            expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',
                  'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa

            assert repr(idx) == expected

            # truncated
            idx = pd.CategoricalIndex(["あ", "いい", "ううう"] * 100)
            expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ',
                  ...
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',
                  'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)"""  # noqa

            assert repr(idx) == expected

            # larger categories
            idx = pd.CategoricalIndex(list("あいうえおかきくけこさしすせそ"))
            expected = """CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ',
                  'さ', 'し', 'す', 'せ', 'そ'],
                 categories=['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', ...], ordered=False, dtype='category')"""  # noqa

            assert repr(idx) == expected
Example #17
0
    def test_string_categorical_index_repr(self):
        # short
        idx = pd.CategoricalIndex(['a', 'bb', 'ccc'])
        expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')"""  # noqa
        assert repr(idx) == expected

        # multiple lines
        idx = pd.CategoricalIndex(['a', 'bb', 'ccc'] * 10)
        expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
                  'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb',
                  'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
                 categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # truncated
        idx = pd.CategoricalIndex(['a', 'bb', 'ccc'] * 100)
        expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
                  ...
                  'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
                 categories=['a', 'bb', 'ccc'], ordered=False, dtype='category', length=300)"""  # noqa

        assert repr(idx) == expected

        # larger categories
        idx = pd.CategoricalIndex(list('abcdefghijklmmo'))
        expected = """CategoricalIndex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
                  'm', 'm', 'o'],
                 categories=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', ...], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # short
        idx = pd.CategoricalIndex(['あ', 'いい', 'ううう'])
        expected = """CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa
        assert repr(idx) == expected

        # multiple lines
        idx = pd.CategoricalIndex(['あ', 'いい', 'ううう'] * 10)
        expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ',
                  'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # truncated
        idx = pd.CategoricalIndex(['あ', 'いい', 'ううう'] * 100)
        expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ',
                  ...
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)"""  # noqa

        assert repr(idx) == expected

        # larger categories
        idx = pd.CategoricalIndex(list('あいうえおかきくけこさしすせそ'))
        expected = """CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し',
                  'す', 'せ', 'そ'],
                 categories=['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', ...], ordered=False, dtype='category')"""  # noqa

        assert repr(idx) == expected

        # Emable Unicode option -----------------------------------------
        with cf.option_context('display.unicode.east_asian_width', True):

            # short
            idx = pd.CategoricalIndex(['あ', 'いい', 'ううう'])
            expected = """CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa
            assert repr(idx) == expected

            # multiple lines
            idx = pd.CategoricalIndex(['あ', 'いい', 'ううう'] * 10)
            expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',
                  'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')"""  # noqa

            assert repr(idx) == expected

            # truncated
            idx = pd.CategoricalIndex(['あ', 'いい', 'ううう'] * 100)
            expected = """CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい',
                  'ううう', 'あ',
                  ...
                  'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',
                  'あ', 'いい', 'ううう'],
                 categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)"""  # noqa

            assert repr(idx) == expected

            # larger categories
            idx = pd.CategoricalIndex(list('あいうえおかきくけこさしすせそ'))
            expected = """CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ',
                  'さ', 'し', 'す', 'せ', 'そ'],
                 categories=['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', ...], ordered=False, dtype='category')"""  # noqa

            assert repr(idx) == expected
Example #18
0
 def test_string_index_repr_with_unicode_option(self, index, expected):
     # Enable Unicode option -----------------------------------------
     with cf.option_context("display.unicode.east_asian_width", True):
         result = repr(index)
         assert result == expected
Example #19
0
 def test_repr_summary(self):
     with cf.option_context("display.max_seq_items", 10):
         result = repr(Index(np.arange(1000)))
         assert len(result) < 200
         assert "..." in result
Example #20
0
def test_null_check_is_series(null_func, ser):
    with cf.option_context("mode.use_inf_as_na", False):
        assert isinstance(null_func(ser), Series)