def cov_func(x, y): x_array = self._prep_values(x) y_array = self._prep_values(y) window_indexer = self._get_window_indexer() min_periods = (self.min_periods if self.min_periods is not None else window_indexer.window_size) start, end = window_indexer.get_window_bounds( num_values=len(x_array), min_periods=min_periods, center=self.center, closed=self.closed, ) result = window_aggregations.ewmcov( x_array, start, end, # error: Argument 4 to "ewmcov" has incompatible type # "Optional[int]"; expected "int" self.min_periods, # type: ignore[arg-type] y_array, self._com, self.adjust, self.ignore_na, bias, ) return Series(result, index=x.index, name=x.name)
def cov_func(x, y): x_array = self._prep_values(x) y_array = self._prep_values(y) window_indexer = self._get_window_indexer() min_periods = ( self.min_periods if self.min_periods is not None else window_indexer.window_size ) start, end = window_indexer.get_window_bounds( num_values=len(x_array), min_periods=min_periods, center=self.center, closed=self.closed, ) result = window_aggregations.ewmcov( x_array, start, end, self.min_periods, y_array, self.com, self.adjust, self.ignore_na, bias, ) return Series(result, index=x.index, name=x.name)
def _cov(x, y): return window_aggregations.ewmcov( x, y, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), 1, )
def f(arg): return window_aggregations.ewmcov( arg, arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias), )
def _cov(x, y): return window_aggregations.ewmcov( x, y, self.com, self.adjust, self.ignore_na, self.min_periods, 1, )
def f(arg): return window_aggregations.ewmcov( arg, arg, self.com, self.adjust, self.ignore_na, self.min_periods, bias, )
def _cov(X, Y): return window_aggregations.ewmcov( X, start, end, min_periods, Y, self._com, self.adjust, self.ignore_na, True, )
def _cov(x, y): return window_aggregations.ewmcov( x, np.array([0], dtype=np.int64), np.array([0], dtype=np.int64), self.min_periods, y, self.com, self.adjust, self.ignore_na, 1, )
def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = window_aggregations.ewmcov( X._prep_values(), Y._prep_values(), self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias), ) return X._wrap_result(cov)
def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = window_aggregations.ewmcov( X._prep_values(), Y._prep_values(), self.com, self.adjust, self.ignore_na, self.min_periods, bias, ) return wrap_result(X, cov)
def cov_func(x, y): x_array = self._prep_values(x) y_array = self._prep_values(y) result = window_aggregations.ewmcov( x_array, np.array([0], dtype=np.int64), np.array([0], dtype=np.int64), self.min_periods, y_array, self.com, self.adjust, self.ignore_na, bias, ) return Series(result, index=x.index, name=x.name)