Example #1
0
    def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
        """
        Return int position of the {value} value in the Series.

        If the {op}imum is achieved in multiple locations,
        the first row position is returned.

        Parameters
        ----------
        axis : {{None}}
            Dummy argument for consistency with Series.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        int
            Row position of the {op}imum value.

        See Also
        --------
        Series.arg{op} : Return position of the {op}imum value.
        Series.arg{oppose} : Return position of the {oppose}imum value.
        numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
        Series.idxmax : Return index label of the maximum values.
        Series.idxmin : Return index label of the minimum values.

        Examples
        --------
        Consider dataset containing cereal calories

        >>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0,
        ...                'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}})
        >>> s
        Corn Flakes              100.0
        Almond Delight           110.0
        Cinnamon Toast Crunch    120.0
        Cocoa Puff               110.0
        dtype: float64

        >>> s.argmax()
        2
        >>> s.argmin()
        0

        The maximum cereal calories is the third element and
        the minimum cereal calories is the first element,
        since series is zero-indexed.
        """
        nv.validate_minmax_axis(axis)
        nv.validate_argmax_with_skipna(skipna, args, kwargs)
        return nanops.nanargmax(self._values, skipna=skipna)
Example #2
0
    def argmin(self, axis=None, skipna=True, *args, **kwargs):
        """
        Return a ndarray of the minimum argument indexer.

        Parameters
        ----------
        axis : {None}
            Dummy argument for consistency with Series
        skipna : bool, default True

        Returns
        -------
        numpy.ndarray

        See Also
        --------
        numpy.ndarray.argmin
        """
        nv.validate_minmax_axis(axis)
        nv.validate_argmax_with_skipna(skipna, args, kwargs)
        return nanops.nanargmin(self._values, skipna=skipna)
Example #3
0
    def argmin(self, axis=None, skipna=True, *args, **kwargs):
        """
        Return a ndarray of the minimum argument indexer.

        Parameters
        ----------
        axis : {None}
            Dummy argument for consistency with Series
        skipna : bool, default True

        Returns
        -------
        numpy.ndarray

        See Also
        --------
        numpy.ndarray.argmin
        """
        nv.validate_minmax_axis(axis)
        nv.validate_argmax_with_skipna(skipna, args, kwargs)
        return nanops.nanargmin(self._values, skipna=skipna)
Example #4
0
 def argmin(self, axis=None, skipna=True, *args, **kwargs) -> int:
     nv.validate_minmax_axis(axis)
     nv.validate_argmax_with_skipna(skipna, args, kwargs)
     return nanops.nanargmin(self._values, skipna=skipna)
Example #5
0
    def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int:
        """
        Return int position of the {value} value in the Series.

        If the {op}imum is achieved in multiple locations,
        the first row position is returned.

        Parameters
        ----------
        axis : {{None}}
            Unused. Parameter needed for compatibility with DataFrame.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        int
            Row position of the {op}imum value.

        See Also
        --------
        Series.arg{op} : Return position of the {op}imum value.
        Series.arg{oppose} : Return position of the {oppose}imum value.
        numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
        Series.idxmax : Return index label of the maximum values.
        Series.idxmin : Return index label of the minimum values.

        Examples
        --------
        Consider dataset containing cereal calories

        >>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0,
        ...                'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}})
        >>> s
        Corn Flakes              100.0
        Almond Delight           110.0
        Cinnamon Toast Crunch    120.0
        Cocoa Puff               110.0
        dtype: float64

        >>> s.argmax()
        2
        >>> s.argmin()
        0

        The maximum cereal calories is the third element and
        the minimum cereal calories is the first element,
        since series is zero-indexed.
        """
        delegate = self._values
        nv.validate_minmax_axis(axis)
        skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs)

        if isinstance(delegate, ExtensionArray):
            if not skipna and delegate.isna().any():
                return -1
            else:
                return delegate.argmax()
        else:
            # error: Incompatible return value type (got "Union[int, ndarray]", expected
            # "int")
            return nanops.nanargmax(  # type: ignore[return-value]
                delegate, skipna=skipna
            )