def test_groupby_datetime_categorical(self): # GH9049: ensure backward compatibility levels = pd.date_range("2014-01-01", periods=4) codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats).mean() expected = data.groupby(np.asarray(cats)).mean() expected = expected.reindex(levels) expected.index = CategoricalIndex(expected.index, categories=expected.index, ordered=True) assert_frame_equal(result, expected) grouped = data.groupby(cats) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = cats.take_nd(idx) ord_data = data.take(idx) expected = ord_data.groupby(ord_labels).describe() expected.index.names = [None, None] assert_frame_equal(desc_result, expected) tm.assert_index_equal(desc_result.index, expected.index) tm.assert_index_equal(desc_result.index.get_level_values(0), expected.index.get_level_values(0)) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) self.assert_index_equal(desc_result.index.get_level_values(0), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) self.assert_index_equal(desc_result.index.get_level_values(1), exp)
def test_groupby_categorical(self): levels = ["foo", "bar", "baz", "qux"] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats).mean() expected = data.groupby(np.asarray(cats)).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) assert_frame_equal(result, expected) grouped = data.groupby(cats) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical(ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"]) expected = ord_data.groupby(exp_cats, sort=False).describe() expected.index.names = [None, None] assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) self.assert_index_equal(desc_result.index.get_level_values(0), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) self.assert_index_equal(desc_result.index.get_level_values(1), exp)
def test_groupby_categorical(self): levels = ['foo', 'bar', 'baz', 'qux'] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats).mean() expected = data.groupby(np.asarray(cats)).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) assert_frame_equal(result, expected) grouped = data.groupby(cats) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical(ord_labels, ordered=True, categories=['foo', 'bar', 'baz', 'qux']) expected = ord_data.groupby(exp_cats, sort=False).describe() expected.index.names = [None, None] assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) self.assert_index_equal(desc_result.index.get_level_values(0), exp) exp = Index( ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] * 4) self.assert_index_equal(desc_result.index.get_level_values(1), exp)
def test_groupby_datetime_categorical(self): # GH9049: ensure backward compatibility levels = pd.date_range('2014-01-01', periods=4) codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats).mean() expected = data.groupby(np.asarray(cats)).mean() expected = expected.reindex(levels) expected.index = CategoricalIndex(expected.index, categories=expected.index, ordered=True) assert_frame_equal(result, expected) grouped = data.groupby(cats) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = cats.take_nd(idx) ord_data = data.take(idx) expected = ord_data.groupby(ord_labels).describe() expected.index.names = [None, None] assert_frame_equal(desc_result, expected) tm.assert_index_equal(desc_result.index, expected.index) tm.assert_index_equal(desc_result.index.get_level_values(0), expected.index.get_level_values(0)) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) self.assert_index_equal(desc_result.index.get_level_values(0), exp) exp = Index( ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] * 4) self.assert_index_equal(desc_result.index.get_level_values(1), exp)