Example #1
0
 def setUp(self):
     self.data_dict = {
         'ItemA' : panel_data1(),
         'ItemB' : panel_data2(),
         'ItemC' : panel_data3(),
         'ItemD' : panel_data1(),
     }
     self.panel = SparsePanel(self.data_dict)
Example #2
0
    def to_sparse(self, fill_value=None, kind='block'):
        """
        Convert to SparsePanel

        Parameters
        ----------
        fill_value : float, default NaN
        kind : {'block', 'integer'}

        Returns
        -------
        y : SparseDataFrame
        """
        from pandas.core.sparse import SparsePanel
        frames = dict(self.iterkv())
        return SparsePanel(frames, items=self.items,
                           major_axis=self.major_axis,
                           minor_axis=self.minor_axis,
                           default_kind=kind,
                           default_fill_value=fill_value)
Example #3
0
 def test_from_dict(self):
     fd = SparsePanel.from_dict(self.data_dict)
     assert_sp_panel_equal(fd, self.panel)
Example #4
0
class TestSparsePanel(TestCase,
                      test_panel.SafeForLongAndSparse,
                      test_panel.SafeForSparse):

    @staticmethod
    def assert_panel_equal(x, y):
        assert_sp_panel_equal(x, y)

    def setUp(self):
        self.data_dict = {
            'ItemA' : panel_data1(),
            'ItemB' : panel_data2(),
            'ItemC' : panel_data3(),
            'ItemD' : panel_data1(),
        }
        self.panel = SparsePanel(self.data_dict)

    @staticmethod
    def _test_op(panel, op):
        # arithmetic tests
        result = op(panel, 1)
        assert_sp_frame_equal(result['ItemA'], op(panel['ItemA'], 1))

    def test_constructor(self):
        self.assertRaises(Exception, SparsePanel, self.data_dict,
                          items=['Item0', 'ItemA', 'ItemB'])

    def test_from_dict(self):
        fd = SparsePanel.from_dict(self.data_dict)
        assert_sp_panel_equal(fd, self.panel)

    def test_pickle(self):
        def _test_roundtrip(panel):
            pickled = pickle.dumps(panel, protocol=pickle.HIGHEST_PROTOCOL)
            unpickled = pickle.loads(pickled)
            assert_sp_panel_equal(panel, unpickled)

        _test_roundtrip(self.panel)

    def test_dense_to_sparse(self):
        wp = Panel.from_dict(self.data_dict)
        dwp = wp.to_sparse()
        self.assert_(isinstance(dwp['ItemA']['A'], SparseSeries))

    def test_to_dense(self):
        dwp = self.panel.to_dense()
        dwp2 = Panel.from_dict(self.data_dict)
        assert_panel_equal(dwp, dwp2)

    def test_to_long(self):
        def _compare_with_dense(panel):
            slp = panel.to_long()
            dlp = panel.to_dense().to_long()

            self.assert_(np.array_equal(slp.values, dlp.values))
            self.assert_(np.array_equal(slp.major_labels,
                                        dlp.major_labels))
            self.assert_(np.array_equal(slp.minor_labels,
                                        dlp.minor_labels))

        _compare_with_dense(self.panel)
        _compare_with_dense(self.panel.reindex(items=['ItemA']))

        zero_panel = SparsePanel(self.data_dict, default_fill_value=0)
        self.assertRaises(Exception, zero_panel.to_long)

        self.assertRaises(Exception, self.panel.to_long,
                          filter_observations=False)

    def test_long_to_wide_sparse(self):
        pass

    def test_values(self):
        pass

    def test_setitem(self):
        self.panel['ItemE'] = self.panel['ItemC']
        self.panel['ItemF'] = self.panel['ItemC'].to_dense()

        assert_sp_frame_equal(self.panel['ItemE'], self.panel['ItemC'])
        assert_sp_frame_equal(self.panel['ItemF'], self.panel['ItemC'])
        assert_almost_equal(self.panel.items, ['ItemA', 'ItemB', 'ItemC',
                                               'ItemD', 'ItemE', 'ItemF'])

        self.assertRaises(Exception, self.panel.__setitem__, 'item6', 1)

    def test_delitem_pop(self):
        del self.panel['ItemB']
        assert_almost_equal(self.panel.items, ['ItemA', 'ItemC', 'ItemD'])
        crackle = self.panel['ItemC']
        pop = self.panel.pop('ItemC')
        self.assert_(pop is crackle)
        assert_almost_equal(self.panel.items, ['ItemA', 'ItemD'])

        self.assertRaises(KeyError, self.panel.__delitem__, 'ItemC')

    def test_copy(self):
        cop = self.panel.copy()
        assert_sp_panel_equal(cop, self.panel)

    def test_reindex(self):
        def _compare_with_dense(swp, items, major, minor):
            swp_re = swp.reindex(items=items, major=major,
                                 minor=minor)
            dwp_re = swp.to_dense().reindex(items=items, major=major,
                                            minor=minor)
            assert_panel_equal(swp_re.to_dense(), dwp_re)

        _compare_with_dense(self.panel, self.panel.items[:2],
                            self.panel.major_axis[::2],
                            self.panel.minor_axis[::2])
        _compare_with_dense(self.panel, None,
                            self.panel.major_axis[::2],
                            self.panel.minor_axis[::2])

        self.assertRaises(ValueError, self.panel.reindex)

        # TODO: do something about this later...
        self.assertRaises(Exception, self.panel.reindex,
                          items=['item0', 'ItemA', 'ItemB'])

        # test copying
        cp = self.panel.reindex(self.panel.major_axis, copy=True)
        cp['ItemA']['E'] = cp['ItemA']['A']
        self.assert_('E' not in self.panel['ItemA'])

    def test_operators(self):
        def _check_ops(panel):
            def _dense_comp(op):
                dense = panel.to_dense()
                sparse_result = op(panel)
                dense_result = op(dense)
                assert_panel_equal(sparse_result.to_dense(), dense_result)

            op1 = lambda x: x + 2

            _dense_comp(op1)
            op2 = lambda x: x.add(x.reindex(major=x.major_axis[::2]))
            _dense_comp(op2)
            op3 = lambda x: x.subtract(x.mean(0), axis=0)
            _dense_comp(op3)
            op4 = lambda x: x.subtract(x.mean(1), axis=1)
            _dense_comp(op4)
            op5 = lambda x: x.subtract(x.mean(2), axis=2)
            _dense_comp(op5)

            # TODO: this case not yet supported!
            # op6 = lambda x: x.add(x.to_long())
            # _dense_comp(op6)

        _check_ops(self.panel)

    def test_major_xs(self):
        def _dense_comp(sparse):
            dense = sparse.to_dense()

            for idx in sparse.major_axis:
                dslice = dense.major_xs(idx)
                sslice = sparse.major_xs(idx)
                assert_frame_equal(dslice, sslice)

        _dense_comp(self.panel)

    def test_minor_xs(self):
        def _dense_comp(sparse):
            dense = sparse.to_dense()

            for idx in sparse.minor_axis:
                dslice = dense.minor_xs(idx)
                sslice = sparse.minor_xs(idx).to_dense()
                assert_frame_equal(dslice, sslice)

        _dense_comp(self.panel)