Example #1
0
def read_html(io,
              match='.+',
              flavor=None,
              header=None,
              index_col=None,
              skiprows=None,
              attrs=None,
              parse_dates=False,
              tupleize_cols=False,
              thousands=',',
              encoding=None,
              decimal='.',
              converters=None,
              na_values=None,
              keep_default_na=True):
    r"""Read HTML tables into a ``list`` of ``DataFrame`` objects.

    Parameters
    ----------
    io : str or file-like
        A URL, a file-like object, or a raw string containing HTML. Note that
        lxml only accepts the http, ftp and file url protocols. If you have a
        URL that starts with ``'https'`` you might try removing the ``'s'``.

    match : str or compiled regular expression, optional
        The set of tables containing text matching this regex or string will be
        returned. Unless the HTML is extremely simple you will probably need to
        pass a non-empty string here. Defaults to '.+' (match any non-empty
        string). The default value will return all tables contained on a page.
        This value is converted to a regular expression so that there is
        consistent behavior between Beautiful Soup and lxml.

    flavor : str or None, container of strings
        The parsing engine to use. 'bs4' and 'html5lib' are synonymous with
        each other, they are both there for backwards compatibility. The
        default of ``None`` tries to use ``lxml`` to parse and if that fails it
        falls back on ``bs4`` + ``html5lib``.

    header : int or list-like or None, optional
        The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to
        make the columns headers.

    index_col : int or list-like or None, optional
        The column (or list of columns) to use to create the index.

    skiprows : int or list-like or slice or None, optional
        0-based. Number of rows to skip after parsing the column integer. If a
        sequence of integers or a slice is given, will skip the rows indexed by
        that sequence.  Note that a single element sequence means 'skip the nth
        row' whereas an integer means 'skip n rows'.

    attrs : dict or None, optional
        This is a dictionary of attributes that you can pass to use to identify
        the table in the HTML. These are not checked for validity before being
        passed to lxml or Beautiful Soup. However, these attributes must be
        valid HTML table attributes to work correctly. For example, ::

            attrs = {'id': 'table'}

        is a valid attribute dictionary because the 'id' HTML tag attribute is
        a valid HTML attribute for *any* HTML tag as per `this document
        <http://www.w3.org/TR/html-markup/global-attributes.html>`__. ::

            attrs = {'asdf': 'table'}

        is *not* a valid attribute dictionary because 'asdf' is not a valid
        HTML attribute even if it is a valid XML attribute.  Valid HTML 4.01
        table attributes can be found `here
        <http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A
        working draft of the HTML 5 spec can be found `here
        <http://www.w3.org/TR/html-markup/table.html>`__. It contains the
        latest information on table attributes for the modern web.

    parse_dates : bool, optional
        See :func:`~pandas.read_csv` for more details.

    tupleize_cols : bool, optional
        If ``False`` try to parse multiple header rows into a
        :class:`~pandas.MultiIndex`, otherwise return raw tuples. Defaults to
        ``False``.

    thousands : str, optional
        Separator to use to parse thousands. Defaults to ``','``.

    encoding : str or None, optional
        The encoding used to decode the web page. Defaults to ``None``.``None``
        preserves the previous encoding behavior, which depends on the
        underlying parser library (e.g., the parser library will try to use
        the encoding provided by the document).

    decimal : str, default '.'
        Character to recognize as decimal point (e.g. use ',' for European
        data).

        .. versionadded:: 0.19.0

    converters : dict, default None
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the cell (not column) content, and return the
        transformed content.

        .. versionadded:: 0.19.0

    na_values : iterable, default None
        Custom NA values

        .. versionadded:: 0.19.0

    keep_default_na : bool, default True
        If na_values are specified and keep_default_na is False the default NaN
        values are overridden, otherwise they're appended to

        .. versionadded:: 0.19.0

    Returns
    -------
    dfs : list of DataFrames

    Notes
    -----
    Before using this function you should read the :ref:`gotchas about the
    HTML parsing libraries <io.html.gotchas>`.

    Expect to do some cleanup after you call this function. For example, you
    might need to manually assign column names if the column names are
    converted to NaN when you pass the `header=0` argument. We try to assume as
    little as possible about the structure of the table and push the
    idiosyncrasies of the HTML contained in the table to the user.

    This function searches for ``<table>`` elements and only for ``<tr>``
    and ``<th>`` rows and ``<td>`` elements within each ``<tr>`` or ``<th>``
    element in the table. ``<td>`` stands for "table data".

    Similar to :func:`~pandas.read_csv` the `header` argument is applied
    **after** `skiprows` is applied.

    This function will *always* return a list of :class:`DataFrame` *or*
    it will fail, e.g., it will *not* return an empty list.

    Examples
    --------
    See the :ref:`read_html documentation in the IO section of the docs
    <io.read_html>` for some examples of reading in HTML tables.

    See Also
    --------
    pandas.read_csv
    """
    _importers()

    # Type check here. We don't want to parse only to fail because of an
    # invalid value of an integer skiprows.
    if isinstance(skiprows, numbers.Integral) and skiprows < 0:
        raise ValueError('cannot skip rows starting from the end of the '
                         'data (you passed a negative value)')
    _validate_header_arg(header)
    return _parse(flavor=flavor,
                  io=io,
                  match=match,
                  header=header,
                  index_col=index_col,
                  skiprows=skiprows,
                  parse_dates=parse_dates,
                  tupleize_cols=tupleize_cols,
                  thousands=thousands,
                  attrs=attrs,
                  encoding=encoding,
                  decimal=decimal,
                  converters=converters,
                  na_values=na_values,
                  keep_default_na=keep_default_na)
Example #2
0
def read_html(io, match='.+', flavor=None, header=None, index_col=None,
              skiprows=None, attrs=None, parse_dates=False,
              tupleize_cols=False, thousands=',', encoding=None,
              decimal='.', converters=None, na_values=None,
              keep_default_na=True):
    r"""Read HTML tables into a ``list`` of ``DataFrame`` objects.

    Parameters
    ----------
    io : str or file-like
        A URL, a file-like object, or a raw string containing HTML. Note that
        lxml only accepts the http, ftp and file url protocols. If you have a
        URL that starts with ``'https'`` you might try removing the ``'s'``.

    match : str or compiled regular expression, optional
        The set of tables containing text matching this regex or string will be
        returned. Unless the HTML is extremely simple you will probably need to
        pass a non-empty string here. Defaults to '.+' (match any non-empty
        string). The default value will return all tables contained on a page.
        This value is converted to a regular expression so that there is
        consistent behavior between Beautiful Soup and lxml.

    flavor : str or None, container of strings
        The parsing engine to use. 'bs4' and 'html5lib' are synonymous with
        each other, they are both there for backwards compatibility. The
        default of ``None`` tries to use ``lxml`` to parse and if that fails it
        falls back on ``bs4`` + ``html5lib``.

    header : int or list-like or None, optional
        The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to
        make the columns headers.

    index_col : int or list-like or None, optional
        The column (or list of columns) to use to create the index.

    skiprows : int or list-like or slice or None, optional
        0-based. Number of rows to skip after parsing the column integer. If a
        sequence of integers or a slice is given, will skip the rows indexed by
        that sequence.  Note that a single element sequence means 'skip the nth
        row' whereas an integer means 'skip n rows'.

    attrs : dict or None, optional
        This is a dictionary of attributes that you can pass to use to identify
        the table in the HTML. These are not checked for validity before being
        passed to lxml or Beautiful Soup. However, these attributes must be
        valid HTML table attributes to work correctly. For example, ::

            attrs = {'id': 'table'}

        is a valid attribute dictionary because the 'id' HTML tag attribute is
        a valid HTML attribute for *any* HTML tag as per `this document
        <http://www.w3.org/TR/html-markup/global-attributes.html>`__. ::

            attrs = {'asdf': 'table'}

        is *not* a valid attribute dictionary because 'asdf' is not a valid
        HTML attribute even if it is a valid XML attribute.  Valid HTML 4.01
        table attributes can be found `here
        <http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A
        working draft of the HTML 5 spec can be found `here
        <http://www.w3.org/TR/html-markup/table.html>`__. It contains the
        latest information on table attributes for the modern web.

    parse_dates : bool, optional
        See :func:`~pandas.read_csv` for more details.

    tupleize_cols : bool, optional
        If ``False`` try to parse multiple header rows into a
        :class:`~pandas.MultiIndex`, otherwise return raw tuples. Defaults to
        ``False``.

    thousands : str, optional
        Separator to use to parse thousands. Defaults to ``','``.

    encoding : str or None, optional
        The encoding used to decode the web page. Defaults to ``None``.``None``
        preserves the previous encoding behavior, which depends on the
        underlying parser library (e.g., the parser library will try to use
        the encoding provided by the document).

    decimal : str, default '.'
        Character to recognize as decimal point (e.g. use ',' for European
        data).

        .. versionadded:: 0.19.0

    converters : dict, default None
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the cell (not column) content, and return the
        transformed content.

        .. versionadded:: 0.19.0

    na_values : iterable, default None
        Custom NA values

        .. versionadded:: 0.19.0

    keep_default_na : bool, default True
        If na_values are specified and keep_default_na is False the default NaN
        values are overridden, otherwise they're appended to

        .. versionadded:: 0.19.0

    Returns
    -------
    dfs : list of DataFrames

    Notes
    -----
    Before using this function you should read the :ref:`gotchas about the
    HTML parsing libraries <html-gotchas>`.

    Expect to do some cleanup after you call this function. For example, you
    might need to manually assign column names if the column names are
    converted to NaN when you pass the `header=0` argument. We try to assume as
    little as possible about the structure of the table and push the
    idiosyncrasies of the HTML contained in the table to the user.

    This function searches for ``<table>`` elements and only for ``<tr>``
    and ``<th>`` rows and ``<td>`` elements within each ``<tr>`` or ``<th>``
    element in the table. ``<td>`` stands for "table data".

    Similar to :func:`~pandas.read_csv` the `header` argument is applied
    **after** `skiprows` is applied.

    This function will *always* return a list of :class:`DataFrame` *or*
    it will fail, e.g., it will *not* return an empty list.

    Examples
    --------
    See the :ref:`read_html documentation in the IO section of the docs
    <io.read_html>` for some examples of reading in HTML tables.

    See Also
    --------
    pandas.read_csv
    """
    _importers()

    # Type check here. We don't want to parse only to fail because of an
    # invalid value of an integer skiprows.
    if isinstance(skiprows, numbers.Integral) and skiprows < 0:
        raise ValueError('cannot skip rows starting from the end of the '
                         'data (you passed a negative value)')
    _validate_header_arg(header)
    return _parse(flavor=flavor, io=io, match=match, header=header,
                  index_col=index_col, skiprows=skiprows,
                  parse_dates=parse_dates, tupleize_cols=tupleize_cols,
                  thousands=thousands, attrs=attrs, encoding=encoding,
                  decimal=decimal, converters=converters, na_values=na_values,
                  keep_default_na=keep_default_na)
Example #3
0
    def parse(self,
              sheet_name=0,
              header=0,
              names=None,
              index_col=None,
              usecols=None,
              squeeze=False,
              dtype=None,
              true_values=None,
              false_values=None,
              skiprows=None,
              nrows=None,
              na_values=None,
              verbose=False,
              parse_dates=False,
              date_parser=None,
              thousands=None,
              comment=None,
              skipfooter=0,
              convert_float=True,
              mangle_dupe_cols=True,
              **kwds):

        _validate_header_arg(header)

        ret_dict = False

        # Keep sheetname to maintain backwards compatibility.
        if isinstance(sheet_name, list):
            sheets = sheet_name
            ret_dict = True
        elif sheet_name is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheet_name]

        # handle same-type duplicates.
        sheets = list(OrderedDict.fromkeys(sheets).keys())

        output = OrderedDict()

        for asheetname in sheets:
            if verbose:
                print("Reading sheet {sheet}".format(sheet=asheetname))

            if isinstance(asheetname, compat.string_types):
                sheet = self.get_sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.get_sheet_by_index(asheetname)

            data = self.get_sheet_data(sheet, convert_float)
            usecols = _maybe_convert_usecols(usecols)

            if sheet.nrows == 0:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None and is_list_like(header):
                header_names = []
                control_row = [True] * len(data[0])

                for row in header:
                    if is_integer(skiprows):
                        row += skiprows

                    data[row], control_row = _fill_mi_header(data[row],
                                                             control_row)

                    if index_col is not None:
                        header_name, _ = _pop_header_name(data[row], index_col)
                        header_names.append(header_name)

            if is_list_like(index_col):
                # Forward fill values for MultiIndex index.
                if not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                # Check if we have an empty dataset
                # before trying to collect data.
                if offset < len(data):
                    for col in index_col:
                        last = data[offset][col]

                        for row in range(offset + 1, len(data)):
                            if data[row][col] == '' or data[row][col] is None:
                                data[row][col] = last
                            else:
                                last = data[row][col]

            has_index_names = is_list_like(header) and len(header) > 1

            # GH 12292 : error when read one empty column from excel file
            try:
                parser = TextParser(data,
                                    names=names,
                                    header=header,
                                    index_col=index_col,
                                    has_index_names=has_index_names,
                                    squeeze=squeeze,
                                    dtype=dtype,
                                    true_values=true_values,
                                    false_values=false_values,
                                    skiprows=skiprows,
                                    nrows=nrows,
                                    na_values=na_values,
                                    parse_dates=parse_dates,
                                    date_parser=date_parser,
                                    thousands=thousands,
                                    comment=comment,
                                    skipfooter=skipfooter,
                                    usecols=usecols,
                                    mangle_dupe_cols=mangle_dupe_cols,
                                    **kwds)

                output[asheetname] = parser.read(nrows=nrows)

                if not squeeze or isinstance(output[asheetname], DataFrame):
                    if header_names:
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)
                    elif compat.PY2:
                        output[asheetname].columns = _maybe_convert_to_string(
                            output[asheetname].columns)

            except EmptyDataError:
                # No Data, return an empty DataFrame
                output[asheetname] = DataFrame()

        if ret_dict:
            return output
        else:
            return output[asheetname]
Example #4
0
    def parse(self,
              sheet_name=0,
              header=0,
              names=None,
              index_col=None,
              usecols=None,
              squeeze=False,
              dtype=None,
              true_values=None,
              false_values=None,
              skiprows=None,
              nrows=None,
              na_values=None,
              verbose=False,
              parse_dates=False,
              date_parser=None,
              thousands=None,
              comment=None,
              skipfooter=0,
              convert_float=True,
              mangle_dupe_cols=True,
              **kwds):

        _validate_header_arg(header)

        ret_dict = False

        # Keep sheetname to maintain backwards compatibility.
        if isinstance(sheet_name, list):
            sheets = sheet_name
            ret_dict = True
        elif sheet_name is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheet_name]

        # handle same-type duplicates.
        sheets = list(OrderedDict.fromkeys(sheets).keys())

        output = OrderedDict()

        for asheetname in sheets:
            if verbose:
                print("Reading sheet {sheet}".format(sheet=asheetname))

            if isinstance(asheetname, compat.string_types):
                sheet = self.get_sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.get_sheet_by_index(asheetname)

            data = self.get_sheet_data(sheet, convert_float)
            usecols = _maybe_convert_usecols(usecols)

            if sheet.nrows == 0:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None and is_list_like(header):
                header_names = []
                control_row = [True] * len(data[0])

                for row in header:
                    if is_integer(skiprows):
                        row += skiprows

                    data[row], control_row = _fill_mi_header(
                        data[row], control_row)

                    if index_col is not None:
                        header_name, _ = _pop_header_name(data[row], index_col)
                        header_names.append(header_name)

            if is_list_like(index_col):
                # Forward fill values for MultiIndex index.
                if not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                # Check if we have an empty dataset
                # before trying to collect data.
                if offset < len(data):
                    for col in index_col:
                        last = data[offset][col]

                        for row in range(offset + 1, len(data)):
                            if data[row][col] == '' or data[row][col] is None:
                                data[row][col] = last
                            else:
                                last = data[row][col]

            has_index_names = is_list_like(header) and len(header) > 1

            # GH 12292 : error when read one empty column from excel file
            try:
                parser = TextParser(data,
                                    names=names,
                                    header=header,
                                    index_col=index_col,
                                    has_index_names=has_index_names,
                                    squeeze=squeeze,
                                    dtype=dtype,
                                    true_values=true_values,
                                    false_values=false_values,
                                    skiprows=skiprows,
                                    nrows=nrows,
                                    na_values=na_values,
                                    parse_dates=parse_dates,
                                    date_parser=date_parser,
                                    thousands=thousands,
                                    comment=comment,
                                    skipfooter=skipfooter,
                                    usecols=usecols,
                                    mangle_dupe_cols=mangle_dupe_cols,
                                    **kwds)

                output[asheetname] = parser.read(nrows=nrows)

                if not squeeze or isinstance(output[asheetname], DataFrame):
                    if header_names:
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)

            except EmptyDataError:
                # No Data, return an empty DataFrame
                output[asheetname] = DataFrame()

        if ret_dict:
            return output
        else:
            return output[asheetname]
Example #5
0
    def _parse_excel(self,
                     sheetname=0,
                     header=0,
                     skiprows=None,
                     names=None,
                     skip_footer=0,
                     index_col=None,
                     has_index_names=None,
                     parse_cols=None,
                     parse_dates=False,
                     date_parser=None,
                     na_values=None,
                     thousands=None,
                     convert_float=True,
                     true_values=None,
                     false_values=None,
                     verbose=False,
                     dtype=None,
                     squeeze=False,
                     **kwds):

        skipfooter = kwds.pop('skipfooter', None)
        if skipfooter is not None:
            skip_footer = skipfooter

        _validate_header_arg(header)
        if has_index_names is not None:
            warn(
                "\nThe has_index_names argument is deprecated; index names "
                "will be automatically inferred based on index_col.\n"
                "This argmument is still necessary if reading Excel output "
                "from 0.16.2 or prior with index names.",
                FutureWarning,
                stacklevel=3)

        if 'chunksize' in kwds:
            raise NotImplementedError("chunksize keyword of read_excel "
                                      "is not implemented")

        if parse_dates is True and index_col is None:
            warn("The 'parse_dates=True' keyword of read_excel was provided"
                 " without an 'index_col' keyword value.")

        def _parse_cell(cell_contents, cell_typ):
            """converts the contents of the cell into a pandas
               appropriate object"""

            if cell_typ == XL_CELL_DATE:

                if xlrd_0_9_3:
                    # Use the newer xlrd datetime handling.
                    try:
                        cell_contents = \
                            xldate.xldate_as_datetime(cell_contents,
                                                      epoch1904)
                    except OverflowError:
                        return cell_contents
                    # Excel doesn't distinguish between dates and time,
                    # so we treat dates on the epoch as times only.
                    # Also, Excel supports 1900 and 1904 epochs.
                    year = (cell_contents.timetuple())[0:3]
                    if ((not epoch1904 and year == (1899, 12, 31))
                            or (epoch1904 and year == (1904, 1, 1))):
                        cell_contents = time(cell_contents.hour,
                                             cell_contents.minute,
                                             cell_contents.second,
                                             cell_contents.microsecond)
                else:
                    # Use the xlrd <= 0.9.2 date handling.
                    try:
                        dt = xldate.xldate_as_tuple(cell_contents, epoch1904)

                    except xldate.XLDateTooLarge:
                        return cell_contents

                    if dt[0] < MINYEAR:
                        cell_contents = time(*dt[3:])
                    else:
                        cell_contents = datetime(*dt)

            elif cell_typ == XL_CELL_ERROR:
                cell_contents = np.nan
            elif cell_typ == XL_CELL_BOOLEAN:
                cell_contents = bool(cell_contents)
            elif convert_float and cell_typ == XL_CELL_NUMBER:
                # GH5394 - Excel 'numbers' are always floats
                # it's a minimal perf hit and less suprising
                val = int(cell_contents)
                if val == cell_contents:
                    cell_contents = val
            return cell_contents

        ret_dict = False
        if isinstance(sheetname, list):
            sheets = sheetname
            ret_dict = True
        elif sheetname is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheetname]

        # handle same-type duplicates.
        sheets = list(OrderedDict.fromkeys(sheets).keys())
        output = OrderedDict()

        import xlrd
        from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        epoch1904 = self.book.datemode

        # xlrd >= 0.9.3 can return datetime objects directly.
        if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
            xlrd_0_9_3 = True
        else:
            xlrd_0_9_3 = False

        # Keep sheetname to maintain backwards compatibility.
        for asheetname in sheets:
            if verbose:
                print("Reading sheet %s" % asheetname)
            if isinstance(asheetname, compat.string_types):
                sheet = self.book.sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.book.sheet_by_index(asheetname)

            data = []
            should_parse = {}

            if sheet.nrows > 5000:
                raise Exception(
                    "The raw file contains more than 5000 rows. Please check if it is correct or split the files (max: 5000 rows) for upload"
                )
            elif kwds.get('MaxTest'):
                continue

            for i in range(sheet.nrows):

                row = []
                for j, (value, typ) in enumerate(
                        zip(sheet.row_values(i), sheet.row_types(i))):
                    if parse_cols is not None and j not in should_parse:
                        should_parse[j] = self._should_parse(j, parse_cols)

                    if parse_cols is None or should_parse[j]:
                        row.append(_parse_cell(value, typ))
                data.append(row)
#            output[asheetname] = data
            if sheet.nrows == 0:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None:
                if is_list_like(header):
                    header_names = []
                    control_row = [True for x in data[0]]
                    for row in header:
                        if is_integer(skiprows):
                            row += skiprows

                        data[row], control_row = _fill_mi_header(
                            data[row], control_row)
                        header_name, data[row] = _pop_header_name(
                            data[row], index_col)
                        header_names.append(header_name)

            if is_list_like(index_col):
                # forward fill values for MultiIndex index
                if not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                for col in index_col:
                    last = data[offset][col]
                    for row in range(offset + 1, len(data)):
                        if data[row][col] == '' or data[row][col] is None:
                            data[row][col] = last
                        else:
                            last = data[row][col]

            if is_list_like(header) and len(header) > 1:
                has_index_names = True

            if kwds.get('parsed'):
                try:
                    parser = TextParser(data,
                                        header=header,
                                        index_col=index_col,
                                        has_index_names=has_index_names,
                                        na_values=na_values,
                                        thousands=thousands,
                                        parse_dates=parse_dates,
                                        date_parser=date_parser,
                                        true_values=true_values,
                                        false_values=false_values,
                                        skiprows=skiprows,
                                        skipfooter=skip_footer,
                                        squeeze=squeeze,
                                        dtype=dtype,
                                        **kwds)
                    output[asheetname] = parser.read()
                    if names is not None:
                        output[asheetname].columns = names
                    if not squeeze or isinstance(output[asheetname],
                                                 DataFrame):
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)
                except EmptyDataError:
                    # No Data, return an empty DataFrame
                    output[asheetname] = DataFrame()
            else:
                output[asheetname] = data

        if ret_dict or kwds.get('MaxTest'):
            return output
        else:
            return output[asheetname]