def test_multiple_render(self): # GH 39396 s = Styler(self.df, uuid_len=0).applymap(lambda x: "color: red;", subset=["A"]) s.render() # do 2 renders to ensure css styles not duplicated assert ('<style type="text/css">\n#T__row0_col0, #T__row1_col0 {\n' " color: red;\n}\n</style>" in s.render())
def style_spread(data): styler = Styler(data.iloc[-1:], precision=2) def z_score(x): m = x.mean() return m - x.std() * 3, m + x.std() * 3 keys = [ 'Mean', '6M Corr.', '3M Corr.', 'Carry', 'Implied Spread', 'RVol Spread' ] for key in keys: l, h = z_score(data[key]) styler = styler.background_gradient(cmap=CMAP, vmin=l, vmax=h, subset=[key]) keys = ['Rank', 'Pct. Rank'] styler = styler.background_gradient(cmap=CMAP, vmin=-10, vmax=110, subset=keys) styler = styler.background_gradient(cmap=CMAP, vmin=-3, vmax=3, subset=["Z-Score"]) return styler
def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series( ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render()
def _marshall_styler(proto: ArrowProto, styler: Styler, default_uuid: str) -> None: """Marshall pandas.Styler into an Arrow proto. Parameters ---------- proto : proto.Arrow Output. The protobuf for Streamlit Arrow proto. styler : pandas.Styler Helps style a DataFrame or Series according to the data with HTML and CSS. default_uuid : str If pandas.Styler uuid is not provided, this value will be used. """ # pandas.Styler uuid should be set before _compute is called. _marshall_uuid(proto, styler, default_uuid) # We're using protected members of pandas.Styler to get styles, # which is not ideal and could break if the interface changes. styler._compute() # In Pandas 1.3.0, styler._translate() signature was changed. # 2 arguments were added: sparse_index and sparse_columns. # The functionality that they provide is not yet supported. if type_util.is_pandas_version_less_than("1.3.0"): pandas_styles = styler._translate() else: pandas_styles = styler._translate(False, False) _marshall_caption(proto, styler) _marshall_styles(proto, styler, pandas_styles) _marshall_display_values(proto, styler.data, pandas_styles)
def style_index(data): styler = Styler(data.iloc[-1:], precision=2) def z_score(x): m = x.mean() return m - x.std() * 3, m + x.std() * 3 keys = [ "1D Perf.", "3M Perf.", "52W Perf.", "Rel. Volume", "1M RVol", "3M RVol" ] for key in keys: l, h = z_score(data[key]) styler = styler.background_gradient(cmap=CMAP, vmin=l, vmax=h, subset=[key]) keys = ['ATH Rank'] styler = styler.background_gradient(cmap=CMAP, vmin=-10, vmax=110, subset=keys) return styler
def test_format_escape_na_rep(): # tests the na_rep is not escaped df = DataFrame([['<>&"', None]]) s = Styler(df, uuid_len=0).format("X&{0}>X", escape=True, na_rep="&") ex = '<td id="T__row0_col0" class="data row0 col0" >X&<>&">X</td>' expected2 = '<td id="T__row0_col1" class="data row0 col1" >&</td>' assert ex in s.render() assert expected2 in s.render()
def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() assert 'class="foo" data-bar' in result result = self.df.style.set_table_attributes(attributes).render() assert 'class="foo" data-bar' in result
def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.render() # An index but no columns DataFrame(columns=['a']).style.render() # A column but no index DataFrame(index=['a']).style.render()
def test_no_cell_ids(self): # GH 35588 # GH 35663 df = DataFrame(data=[[0]]) styler = Styler(df, uuid="_", cell_ids=False) styler.render() s = styler.render() # render twice to ensure ctx is not updated assert s.find('<td class="data row0 col0" >') != -1
def test_precision(self): s = Styler(self.df, precision=2) assert s.precision == 2 with tm.assert_produces_warning(FutureWarning): s2 = s.set_precision(4) assert s is s2 assert s.precision == 4
def test_rowspan_w3(): # GH 38533 df = DataFrame(data=[[1, 2]], index=[["l0", "l0"], ["l1a", "l1b"]]) styler = Styler(df, uuid="_", cell_ids=False) assert ( '<th id="T___level0_row0" class="row_heading ' 'level0 row0" rowspan="2">l0</th>' in styler.render() )
def test_uuid(self): styler = Styler(self.df, uuid="abc123") result = styler.render() assert "abc123" in result styler = self.df.style result = styler.set_uuid("aaa") assert result is styler assert result.uuid == "aaa"
def test_caption(self): styler = Styler(self.df, caption="foo") result = styler.render() assert all(["caption" in result, "foo" in result]) styler = self.df.style result = styler.set_caption("baz") assert styler is result assert styler.caption == "baz"
def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() self.assertTrue(all(['caption' in result, 'foo' in result])) styler = self.df.style result = styler.set_caption('baz') self.assertTrue(styler is result) self.assertEqual(styler.caption, 'baz')
def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() self.assertTrue('abc123' in result) styler = self.df.style result = styler.set_uuid('aaa') self.assertTrue(result is styler) self.assertEqual(result.uuid, 'aaa')
def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() assert 'abc123' in result styler = self.df.style result = styler.set_uuid('aaa') assert result is styler assert result.uuid == 'aaa'
def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() assert all(['caption' in result, 'foo' in result]) styler = self.df.style result = styler.set_caption('baz') assert styler is result assert styler.caption == 'baz'
def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) self.assertEqual(s.precision, 10) s = Styler(self.df, precision=2) self.assertEqual(s.precision, 2) s2 = s.set_precision(4) self.assertTrue(s is s2) self.assertEqual(s.precision, 4)
def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) self.assertEqual(s.precision, 10) s = Styler(self.df, precision=2) self.assertEqual(s.precision, 2) s2 = s.set_precision(4) assert s is s2 self.assertEqual(s.precision, 4)
def test_uuid_len(self, len_): # GH 36345 df = DataFrame(data=[["A"]]) s = Styler(df, uuid_len=len_, cell_ids=False).render() strt = s.find('id="T_') end = s[strt + 6:].find('"') if len_ > 32: assert end == 32 + 1 else: assert end == len_ + 1
def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) assert s.precision == 10 s = Styler(self.df, precision=2) assert s.precision == 2 s2 = s.set_precision(4) assert s is s2 assert s.precision == 4
def test_table_styles(self): style = [{'selector': 'th', 'props': [('foo', 'bar')]}] styler = Styler(self.df, table_styles=style) result = ' '.join(styler.render().split()) assert 'th { foo: bar; }' in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style
def test_set_data_classes(self, classes): # GH 36159 df = DataFrame(data=[[0, 1], [2, 3]], columns=["A", "B"], index=["a", "b"]) s = Styler(df, uuid_len=0, cell_ids=False).set_td_classes(classes).render() assert '<td class="data row0 col0" >0</td>' in s assert '<td class="data row0 col1 test-class" >1</td>' in s assert '<td class="data row1 col0" >2</td>' in s assert '<td class="data row1 col1" >3</td>' in s # GH 39317 s = Styler(df, uuid_len=0, cell_ids=True).set_td_classes(classes).render() assert '<td id="T__row0_col0" class="data row0 col0" >0</td>' in s assert '<td id="T__row0_col1" class="data row0 col1 test-class" >1</td>' in s assert '<td id="T__row1_col0" class="data row1 col0" >2</td>' in s assert '<td id="T__row1_col1" class="data row1 col1" >3</td>' in s
def __init__(self, step1, step2, variables: Dict[str, Variable], name: str = ""): self.step1 = copy.deepcopy(step1) self.step2 = copy.deepcopy(step2) self.variables = copy.deepcopy(variables) self.name = name s = Styler(pd.DataFrame()) s = s.bar(subset=['Preds'], align='zero', color='red') s = s.bar(subset=['Step2'], align='zero', color='blue') self._style = s.export()
def test_tooltip_css_class(self): # GH 21266 df = DataFrame(data=[[0, 1], [2, 3]]) s = (Styler(df, uuid_len=0).set_tooltips(DataFrame([[ "tooltip" ]])).set_tooltips_class(name="other-class", properties=[("color", "green")]).render()) assert "#T__ .other-class {\n color: green;\n" in s assert '#T__ #T__row0_col0 .other-class::after {\n content: "tooltip";\n' in s # GH 39563 s = (Styler(df, uuid_len=0).set_tooltips(DataFrame([[ "tooltip" ]])).set_tooltips_class(name="other-class", properties="color:green;color:red;").render()) assert "#T__ .other-class {\n color: green;\n color: red;\n}" in s
def test_init_with_na_rep(self): # GH 21527 28358 df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"]) ctx = Styler(df, na_rep="NA")._translate() assert ctx["body"][0][1]["display_value"] == "NA" assert ctx["body"][0][2]["display_value"] == "NA"
def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=['A', 'A']) with pytest.raises(ValueError): df.style with pytest.raises(ValueError): Styler(df)
def test_table_styles(self): style = [{"selector": "th", "props": [("foo", "bar")]}] # default format styler = Styler(self.df, table_styles=style) result = " ".join(styler.render().split()) assert "th { foo: bar; }" in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style # GH 39563 style = [{"selector": "th", "props": "foo:bar;"}] # css string format styler = self.df.style.set_table_styles(style) result = " ".join(styler.render().split()) assert "th { foo: bar; }" in result
def test_tooltip_render(self, ttips): # GH 21266 df = DataFrame(data=[[0, 3], [1, 2]], columns=["A", "B"], index=["a", "b"]) s = Styler(df, uuid_len=0).set_tooltips(ttips).render() # test tooltip table level class assert "#T__ .pd-t {\n visibility: hidden;\n" in s # test 'Min' tooltip added assert ( "#T__ #T__row0_col0:hover .pd-t {\n visibility: visible;\n}\n" + '#T__ #T__row0_col0 .pd-t::after {\n content: "Min";\n}' in s) assert ( '<td id="T__row0_col0" class="data row0 col0" >0<span class="pd-t">' + "</span></td>" in s) # test 'Max' tooltip added assert ( "#T__ #T__row0_col1:hover .pd-t {\n visibility: visible;\n}\n" + '#T__ #T__row0_col1 .pd-t::after {\n content: "Max";\n}' in s) assert ( '<td id="T__row0_col1" class="data row0 col1" >3<span class="pd-t">' + "</span></td>" in s)
def test_nonunique_raises(self): df = DataFrame([[1, 2]], columns=["A", "A"]) msg = "style is not supported for non-unique indices." with pytest.raises(ValueError, match=msg): df.style with pytest.raises(ValueError, match=msg): Styler(df)
def setup_method(self, method): np.random.seed(24) self.s = DataFrame({'A': np.random.permutation(range(6))}) self.df = DataFrame({'A': [0, 1], 'B': np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo='bar'): return pd.Series(['color: %s' % foo], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({'A': ['color: red', 'color: blue']}) self.dataframes = [ self.df, pd.DataFrame({'f': [1., 2.], 'o': ['a', 'b'], 'c': pd.Categorical(['a', 'b'])}) ]
def test_from_custom_template(tmpdir): p = tmpdir.mkdir("templates").join("myhtml.tpl") p.write(textwrap.dedent("""\ {% extends "html.tpl" %} {% block table %} <h1>{{ table_title|default("My Table") }}</h1> {{ super() }} {% endblock table %}""")) result = Styler.from_custom_template(str(tmpdir.join('templates')), 'myhtml.tpl') assert issubclass(result, Styler) assert result.env is not Styler.env assert result.template is not Styler.template styler = result(pd.DataFrame({"A": [1, 2]})) assert styler.render()
class TestStyler(TestCase): def setUp(self): np.random.seed(24) self.s = DataFrame({'A': np.random.permutation(range(6))}) self.df = DataFrame({'A': [0, 1], 'B': np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo='bar'): return pd.Series(['color: %s' % foo], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({'A': ['color: red', 'color: blue']}) self.dataframes = [ self.df, pd.DataFrame({'f': [1., 2.], 'o': ['a', 'b'], 'c': pd.Categorical(['a', 'b'])}) ] def test_init_non_pandas(self): with tm.assertRaises(TypeError): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) self.assertEqual(result.data.ndim, 2) def test_repr_html_ok(self): self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): ['color: red'], (1, 0): ['color: blue']} self.assertEqual(self.styler.ctx, expected) def test_update_ctx_flatten_multi(self): attrs = DataFrame({"A": ['color: red; foo: bar', 'color: blue; foo: baz']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} self.assertEqual(self.styler.ctx, expected) def test_update_ctx_flatten_multi_traliing_semi(self): attrs = DataFrame({"A": ['color: red; foo: bar;', 'color: blue; foo: baz;']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} self.assertEqual(self.styler.ctx, expected) def test_copy(self): s2 = copy.copy(self.styler) self.assertTrue(self.styler is not s2) self.assertTrue(self.styler.ctx is s2.ctx) # shallow self.assertTrue(self.styler._todo is s2._todo) self.styler._update_ctx(self.attrs) self.styler.highlight_max() self.assertEqual(self.styler.ctx, s2.ctx) self.assertEqual(self.styler._todo, s2._todo) def test_deepcopy(self): s2 = copy.deepcopy(self.styler) self.assertTrue(self.styler is not s2) self.assertTrue(self.styler.ctx is not s2.ctx) self.assertTrue(self.styler._todo is not s2._todo) self.styler._update_ctx(self.attrs) self.styler.highlight_max() self.assertNotEqual(self.styler.ctx, s2.ctx) self.assertEqual(s2._todo, []) self.assertNotEqual(self.styler._todo, s2._todo) def test_clear(self): s = self.df.style.highlight_max()._compute() self.assertTrue(len(s.ctx) > 0) self.assertTrue(len(s._todo) > 0) s.clear() self.assertTrue(len(s.ctx) == 0) self.assertTrue(len(s._todo) == 0) def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_set_properties(self): df = pd.DataFrame({"A": [0, 1]}) result = df.style.set_properties(color='white', size='10px')._compute().ctx # order is deterministic v = ["color: white", "size: 10px"] expected = {(0, 0): v, (1, 0): v} self.assertEqual(result.keys(), expected.keys()) for v1, v2 in zip(result.values(), expected.values()): self.assertEqual(sorted(v1), sorted(v2)) def test_set_properties_subset(self): df = pd.DataFrame({'A': [0, 1]}) result = df.style.set_properties(subset=pd.IndexSlice[0, 'A'], color='white')._compute().ctx expected = {(0, 0): ['color: white']} self.assertEqual(result, expected) def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'is_visible': True, 'display_value': ''}, {'class': 'col_heading level0 col0', 'display_value': 'A', 'type': 'th', 'value': 'A', 'is_visible': True, }, {'class': 'col_heading level0 col1', 'display_value': 'B', 'type': 'th', 'value': 'B', 'is_visible': True, }, {'class': 'col_heading level0 col2', 'display_value': 'C', 'type': 'th', 'value': 'C', 'is_visible': True, }]] self.assertEqual(result['head'], expected) def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index('A').style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'B', 'display_value': 'B', 'is_visible': True}, {'class': 'col_heading level0 col1', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'blank', 'type': 'th', 'value': ''}, {'class': 'blank', 'type': 'th', 'value': ''}]] self.assertEqual(result['head'], expected) def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index(['A', 'B']).style._translate() expected = [[ {'class': 'blank', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'index_name level1', 'type': 'th', 'value': 'B'}, {'class': 'blank', 'type': 'th', 'value': ''}]] self.assertEqual(result['head'], expected) def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = pd.DataFrame({0: [1, 2, 3]}) df.style._translate() def test_apply_axis(self): df = pd.DataFrame({'A': [0, 0], 'B': [1, 1]}) f = lambda x: ['val: %s' % x.max() for v in x] result = df.style.apply(f, axis=1) self.assertEqual(len(result._todo), 1) self.assertEqual(len(result.ctx), 0) result._compute() expected = {(0, 0): ['val: 1'], (0, 1): ['val: 1'], (1, 0): ['val: 1'], (1, 1): ['val: 1']} self.assertEqual(result.ctx, expected) result = df.style.apply(f, axis=0) expected = {(0, 0): ['val: 0'], (0, 1): ['val: 1'], (1, 0): ['val: 0'], (1, 1): ['val: 1']} result._compute() self.assertEqual(result.ctx, expected) result = df.style.apply(f) # default result._compute() self.assertEqual(result.ctx, expected) def test_apply_subset(self): axes = [0, 1] slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for ax in axes: for slice_ in slices: result = self.df.style.apply(self.h, axis=ax, subset=slice_, foo='baz')._compute().ctx expected = dict(((r, c), ['color: baz']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) self.assertEqual(result, expected) def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = dict(((r, c), ['foo: bar']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) self.assertEqual(result, expected) def test_empty(self): df = pd.DataFrame({'A': [1, 0]}) s = df.style s.ctx = {(0, 0): ['color: red'], (1, 0): ['']} result = s._translate()['cellstyle'] expected = [{'props': [['color', ' red']], 'selector': 'row0_col0'}, {'props': [['', '']], 'selector': 'row1_col0'}] self.assertEqual(result, expected) def test_bar(self): df = pd.DataFrame({'A': [0, 1, 2]}) result = df.style.bar()._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 50.0%, transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 100.0%, transparent 0%)'] } self.assertEqual(result, expected) result = df.style.bar(color='red', width=50)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 25.0%, transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 50.0%, transparent 0%)'] } self.assertEqual(result, expected) df['C'] = ['a'] * len(df) result = df.style.bar(color='red', width=50)._compute().ctx self.assertEqual(result, expected) df['C'] = df['C'].astype('category') result = df.style.bar(color='red', width=50)._compute().ctx self.assertEqual(result, expected) def test_bar_0points(self): df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.style.bar()._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%'], (0, 2): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)']} self.assertEqual(result, expected) result = df.style.bar(axis=1)._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (0, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (1, 0): ['width: 10em', ' height: 80%'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)']} self.assertEqual(result, expected) def test_highlight_null(self, null_color='red'): df = pd.DataFrame({'A': [0, np.nan]}) result = df.style.highlight_null()._compute().ctx expected = {(0, 0): [''], (1, 0): ['background-color: red']} self.assertEqual(result, expected) def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=['A', 'A']) with tm.assertRaises(ValueError): df.style with tm.assertRaises(ValueError): Styler(df) def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() self.assertTrue(all(['caption' in result, 'foo' in result])) styler = self.df.style result = styler.set_caption('baz') self.assertTrue(styler is result) self.assertEqual(styler.caption, 'baz') def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() self.assertTrue('abc123' in result) styler = self.df.style result = styler.set_uuid('aaa') self.assertTrue(result is styler) self.assertEqual(result.uuid, 'aaa') def test_table_styles(self): style = [{'selector': 'th', 'props': [('foo', 'bar')]}] styler = Styler(self.df, table_styles=style) result = ' '.join(styler.render().split()) self.assertTrue('th { foo: bar; }' in result) styler = self.df.style result = styler.set_table_styles(style) self.assertTrue(styler is result) self.assertEqual(styler.table_styles, style) def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() self.assertTrue('class="foo" data-bar' in result) result = self.df.style.set_table_attributes(attributes).render() self.assertTrue('class="foo" data-bar' in result) def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) self.assertEqual(s.precision, 10) s = Styler(self.df, precision=2) self.assertEqual(s.precision, 2) s2 = s.set_precision(4) self.assertTrue(s is s2) self.assertEqual(s.precision, 4) def test_apply_none(self): def f(x): return pd.DataFrame(np.where(x == x.max(), 'color: red', ''), index=x.index, columns=x.columns) result = (pd.DataFrame([[1, 2], [3, 4]]) .style.apply(f, axis=None)._compute().ctx) self.assertEqual(result[(1, 1)], ['color: red']) def test_trim(self): result = self.df.style.render() # trim=True self.assertEqual(result.count('#'), 0) result = self.df.style.highlight_max().render() self.assertEqual(result.count('#'), len(self.df.columns)) def test_highlight_max(self): df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) # max(df) = min(-df) for max_ in [True, False]: if max_: attr = 'highlight_max' else: df = -df attr = 'highlight_min' result = getattr(df.style, attr)()._compute().ctx self.assertEqual(result[(1, 1)], ['background-color: yellow']) result = getattr(df.style, attr)(color='green')._compute().ctx self.assertEqual(result[(1, 1)], ['background-color: green']) result = getattr(df.style, attr)(subset='A')._compute().ctx self.assertEqual(result[(1, 0)], ['background-color: yellow']) result = getattr(df.style, attr)(axis=0)._compute().ctx expected = {(1, 0): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 1): [''], (0, 0): ['']} self.assertEqual(result, expected) result = getattr(df.style, attr)(axis=1)._compute().ctx expected = {(0, 1): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 0): [''], (1, 0): ['']} self.assertEqual(result, expected) # separate since we cant negate the strs df['C'] = ['a', 'b'] result = df.style.highlight_max()._compute().ctx expected = {(1, 1): ['background-color: yellow']} result = df.style.highlight_min()._compute().ctx expected = {(0, 0): ['background-color: yellow']} def test_export(self): f = lambda x: 'color: red' if x > 0 else 'color: blue' g = lambda x, y, z: 'color: %s' if x > 0 else 'color: %s' % z style1 = self.styler style1.applymap(f)\ .applymap(g, y='a', z='b')\ .highlight_max() result = style1.export() style2 = self.df.style style2.use(result) self.assertEqual(style1._todo, style2._todo) style2.render() def test_display_format(self): df = pd.DataFrame(np.random.random(size=(2, 2))) ctx = df.style.format("{:0.1f}")._translate() self.assertTrue(all(['display_value' in c for c in row] for row in ctx['body'])) self.assertTrue(all([len(c['display_value']) <= 3 for c in row[1:]] for row in ctx['body'])) self.assertTrue( len(ctx['body'][0][1]['display_value'].lstrip('-')) <= 3) def test_display_format_raises(self): df = pd.DataFrame(np.random.randn(2, 2)) with tm.assertRaises(TypeError): df.style.format(5) with tm.assertRaises(TypeError): df.style.format(True) def test_display_subset(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"}, subset=pd.IndexSlice[0, :])._translate() expected = '0.1' self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], '1.1234') self.assertEqual(ctx['body'][0][2]['display_value'], '12.34%') raw_11 = '1.1234' ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice['a'])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][0][2]['display_value'], '0.1234') ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, 'a'])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[[0, 1], ['a']])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], '1.1') self.assertEqual(ctx['body'][0][2]['display_value'], '0.1234') self.assertEqual(ctx['body'][1][2]['display_value'], '1.1234') def test_display_dict(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"})._translate() self.assertEqual(ctx['body'][0][1]['display_value'], '0.1') self.assertEqual(ctx['body'][0][2]['display_value'], '12.34%') df['c'] = ['aaa', 'bbb'] ctx = df.style.format({"a": "{:0.1f}", "c": str.upper})._translate() self.assertEqual(ctx['body'][0][1]['display_value'], '0.1') self.assertEqual(ctx['body'][0][3]['display_value'], 'AAA') def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with tm.assertRaises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with tm.assertRaises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with tm.assertRaises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with tm.assertRaises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1) def test_apply_bad_return(self): def f(x): return '' df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(TypeError): df.style._apply(f, axis=None) def test_apply_bad_labels(self): def f(x): return pd.DataFrame(index=[1, 2], columns=['a', 'b']) df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(ValueError): df.style._apply(f, axis=None) def test_get_level_lengths(self): index = pd.MultiIndex.from_product([['a', 'b'], [0, 1, 2]]) expected = {(0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_get_level_lengths_un_sorted(self): index = pd.MultiIndex.from_arrays([ [1, 1, 2, 1], ['a', 'b', 'b', 'd'] ]) expected = {(0, 0): 2, (0, 2): 1, (0, 3): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_mi_sparse(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body_0 = result['body'][0][0] expected_0 = { "value": "a", "display_value": "a", "is_visible": True, "type": "th", "attributes": ["rowspan=2"], "class": "row_heading level0 row0", } tm.assert_dict_equal(body_0, expected_0) body_1 = result['body'][0][1] expected_1 = { "value": 0, "display_value": 0, "is_visible": True, "type": "th", "class": "row_heading level1 row0", } tm.assert_dict_equal(body_1, expected_1) body_10 = result['body'][1][0] expected_10 = { "value": 'a', "display_value": 'a', "is_visible": False, "type": "th", "class": "row_heading level0 row1", } tm.assert_dict_equal(body_10, expected_10) head = result['head'][0] expected = [ {'type': 'th', 'class': 'blank', 'value': '', 'is_visible': True, "display_value": ''}, {'type': 'th', 'class': 'blank level0', 'value': '', 'is_visible': True, 'display_value': ''}, {'type': 'th', 'class': 'col_heading level0 col0', 'value': 'A', 'is_visible': True, 'display_value': 'A'}] self.assertEqual(head, expected) def test_mi_sparse_disabled(self): with pd.option_context('display.multi_sparse', False): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body = result['body'] for row in body: assert 'attributes' not in row[0] def test_mi_sparse_index_names(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays( [['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) ) result = df.style._translate() head = result['head'][1] expected = [{ 'class': 'index_name level0', 'value': 'idx_level_0', 'type': 'th'}, {'class': 'index_name level1', 'value': 'idx_level_1', 'type': 'th'}, {'class': 'blank', 'value': '', 'type': 'th'}] self.assertEqual(head, expected) def test_mi_sparse_column_names(self): df = pd.DataFrame( np.arange(16).reshape(4, 4), index=pd.MultiIndex.from_arrays( [['a', 'a', 'b', 'a'], [0, 1, 1, 2]], names=['idx_level_0', 'idx_level_1']), columns=pd.MultiIndex.from_arrays( [['C1', 'C1', 'C2', 'C2'], [1, 0, 1, 0]], names=['col_0', 'col_1'] ) ) result = df.style._translate() head = result['head'][1] expected = [ {'class': 'blank', 'value': '', 'display_value': '', 'type': 'th', 'is_visible': True}, {'class': 'index_name level1', 'value': 'col_1', 'display_value': 'col_1', 'is_visible': True, 'type': 'th'}, {'class': 'col_heading level1 col0', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'class': 'col_heading level1 col1', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, {'class': 'col_heading level1 col2', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'class': 'col_heading level1 col3', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, ] self.assertEqual(head, expected)
class TestStyler(object): def setup_method(self, method): np.random.seed(24) self.s = DataFrame({'A': np.random.permutation(range(6))}) self.df = DataFrame({'A': [0, 1], 'B': np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo='bar'): return pd.Series( ['color: {foo}'.format(foo=foo)], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({'A': ['color: red', 'color: blue']}) self.dataframes = [ self.df, pd.DataFrame({'f': [1., 2.], 'o': ['a', 'b'], 'c': pd.Categorical(['a', 'b'])}) ] def test_init_non_pandas(self): with pytest.raises(TypeError): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) assert result.data.ndim == 2 def test_repr_html_ok(self): self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): ['color: red'], (1, 0): ['color: blue']} assert self.styler.ctx == expected def test_update_ctx_flatten_multi(self): attrs = DataFrame({"A": ['color: red; foo: bar', 'color: blue; foo: baz']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} assert self.styler.ctx == expected def test_update_ctx_flatten_multi_traliing_semi(self): attrs = DataFrame({"A": ['color: red; foo: bar;', 'color: blue; foo: baz;']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} assert self.styler.ctx == expected def test_copy(self): s2 = copy.copy(self.styler) assert self.styler is not s2 assert self.styler.ctx is s2.ctx # shallow assert self.styler._todo is s2._todo self.styler._update_ctx(self.attrs) self.styler.highlight_max() assert self.styler.ctx == s2.ctx assert self.styler._todo == s2._todo def test_deepcopy(self): s2 = copy.deepcopy(self.styler) assert self.styler is not s2 assert self.styler.ctx is not s2.ctx assert self.styler._todo is not s2._todo self.styler._update_ctx(self.attrs) self.styler.highlight_max() assert self.styler.ctx != s2.ctx assert s2._todo == [] assert self.styler._todo != s2._todo def test_clear(self): s = self.df.style.highlight_max()._compute() assert len(s.ctx) > 0 assert len(s._todo) > 0 s.clear() assert len(s.ctx) == 0 assert len(s._todo) == 0 def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.render() # An index but no columns DataFrame(columns=['a']).style.render() # A column but no index DataFrame(index=['a']).style.render() # No IndexError raised? def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_set_properties(self): df = pd.DataFrame({"A": [0, 1]}) result = df.style.set_properties(color='white', size='10px')._compute().ctx # order is deterministic v = ["color: white", "size: 10px"] expected = {(0, 0): v, (1, 0): v} assert result.keys() == expected.keys() for v1, v2 in zip(result.values(), expected.values()): assert sorted(v1) == sorted(v2) def test_set_properties_subset(self): df = pd.DataFrame({'A': [0, 1]}) result = df.style.set_properties(subset=pd.IndexSlice[0, 'A'], color='white')._compute().ctx expected = {(0, 0): ['color: white']} assert result == expected def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'is_visible': True, 'display_value': ''}, {'class': 'col_heading level0 col0', 'display_value': 'A', 'type': 'th', 'value': 'A', 'is_visible': True, }, {'class': 'col_heading level0 col1', 'display_value': 'B', 'type': 'th', 'value': 'B', 'is_visible': True, }, {'class': 'col_heading level0 col2', 'display_value': 'C', 'type': 'th', 'value': 'C', 'is_visible': True, }]] assert result['head'] == expected def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index('A').style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'B', 'display_value': 'B', 'is_visible': True}, {'class': 'col_heading level0 col1', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'blank', 'type': 'th', 'value': ''}, {'class': 'blank', 'type': 'th', 'value': ''}]] assert result['head'] == expected def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index(['A', 'B']).style._translate() expected = [[ {'class': 'blank', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'index_name level1', 'type': 'th', 'value': 'B'}, {'class': 'blank', 'type': 'th', 'value': ''}]] assert result['head'] == expected def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = pd.DataFrame({0: [1, 2, 3]}) df.style._translate() def test_apply_axis(self): df = pd.DataFrame({'A': [0, 0], 'B': [1, 1]}) f = lambda x: ['val: {max}'.format(max=x.max()) for v in x] result = df.style.apply(f, axis=1) assert len(result._todo) == 1 assert len(result.ctx) == 0 result._compute() expected = {(0, 0): ['val: 1'], (0, 1): ['val: 1'], (1, 0): ['val: 1'], (1, 1): ['val: 1']} assert result.ctx == expected result = df.style.apply(f, axis=0) expected = {(0, 0): ['val: 0'], (0, 1): ['val: 1'], (1, 0): ['val: 0'], (1, 1): ['val: 1']} result._compute() assert result.ctx == expected result = df.style.apply(f) # default result._compute() assert result.ctx == expected def test_apply_subset(self): axes = [0, 1] slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for ax in axes: for slice_ in slices: result = self.df.style.apply(self.h, axis=ax, subset=slice_, foo='baz')._compute().ctx expected = dict(((r, c), ['color: baz']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) assert result == expected def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = dict(((r, c), ['foo: bar']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) assert result == expected def test_where_with_one_style(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' result = self.df.style.where(f, style1)._compute().ctx expected = dict(((r, c), [style1 if f(self.df.loc[row, col]) else '']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns)) assert result == expected def test_where_subset(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = dict(((r, c), [style1 if f(self.df.loc[row, col]) else style2]) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) assert result == expected def test_where_subset_compare_with_applymap(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' def g(x): return style1 if f(x) else style2 slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = self.df.style.applymap(g, subset=slice_)._compute().ctx assert result == expected def test_empty(self): df = pd.DataFrame({'A': [1, 0]}) s = df.style s.ctx = {(0, 0): ['color: red'], (1, 0): ['']} result = s._translate()['cellstyle'] expected = [{'props': [['color', ' red']], 'selector': 'row0_col0'}, {'props': [['', '']], 'selector': 'row1_col0'}] assert result == expected def test_bar_align_left(self): df = pd.DataFrame({'A': [0, 1, 2]}) result = df.style.bar()._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 50.0%, transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 100.0%, transparent 0%)'] } assert result == expected result = df.style.bar(color='red', width=50)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 25.0%, transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 50.0%, transparent 0%)'] } assert result == expected df['C'] = ['a'] * len(df) result = df.style.bar(color='red', width=50)._compute().ctx assert result == expected df['C'] = df['C'].astype('category') result = df.style.bar(color='red', width=50)._compute().ctx assert result == expected def test_bar_align_left_0points(self): df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.style.bar()._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%'], (0, 2): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)']} assert result == expected result = df.style.bar(axis=1)._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (0, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (1, 0): ['width: 10em', ' height: 80%'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)']} assert result == expected def test_bar_align_mid_pos_and_neg(self): df = pd.DataFrame({'A': [-10, 0, 20, 90]}) result = df.style.bar(align='mid', color=[ '#d65f5f', '#5fba7d'])._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 0.0%, #d65f5f 0.0%, ' '#d65f5f 10.0%, transparent 10.0%)'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 10.0%, ' '#d65f5f 10.0%, #d65f5f 10.0%, ' 'transparent 10.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 10.0%, #5fba7d 10.0%' ', #5fba7d 30.0%, transparent 30.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 10.0%, ' '#5fba7d 10.0%, #5fba7d 100.0%, ' 'transparent 100.0%)']} assert result == expected def test_bar_align_mid_all_pos(self): df = pd.DataFrame({'A': [10, 20, 50, 100]}) result = df.style.bar(align='mid', color=[ '#d65f5f', '#5fba7d'])._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 0.0%, #5fba7d 0.0%, ' '#5fba7d 10.0%, transparent 10.0%)'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 0.0%, #5fba7d 0.0%, ' '#5fba7d 20.0%, transparent 20.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 0.0%, #5fba7d 0.0%, ' '#5fba7d 50.0%, transparent 50.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 0.0%, #5fba7d 0.0%, ' '#5fba7d 100.0%, transparent 100.0%)']} assert result == expected def test_bar_align_mid_all_neg(self): df = pd.DataFrame({'A': [-100, -60, -30, -20]}) result = df.style.bar(align='mid', color=[ '#d65f5f', '#5fba7d'])._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 0.0%, ' '#d65f5f 0.0%, #d65f5f 100.0%, ' 'transparent 100.0%)'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 40.0%, ' '#d65f5f 40.0%, #d65f5f 100.0%, ' 'transparent 100.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 70.0%, ' '#d65f5f 70.0%, #d65f5f 100.0%, ' 'transparent 100.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 80.0%, ' '#d65f5f 80.0%, #d65f5f 100.0%, ' 'transparent 100.0%)']} assert result == expected def test_bar_align_zero_pos_and_neg(self): # See https://github.com/pandas-dev/pandas/pull/14757 df = pd.DataFrame({'A': [-10, 0, 20, 90]}) result = df.style.bar(align='zero', color=[ '#d65f5f', '#5fba7d'], width=90)._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 45.0%, ' '#d65f5f 45.0%, #d65f5f 50%, ' 'transparent 50%)'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 50%, ' '#5fba7d 50%, #5fba7d 50.0%, ' 'transparent 50.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 50%, #5fba7d 50%, ' '#5fba7d 60.0%, transparent 60.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 0%, transparent 50%, #5fba7d 50%, ' '#5fba7d 95.0%, transparent 95.0%)']} assert result == expected def test_bar_bad_align_raises(self): df = pd.DataFrame({'A': [-100, -60, -30, -20]}) with pytest.raises(ValueError): df.style.bar(align='poorly', color=['#d65f5f', '#5fba7d']) def test_highlight_null(self, null_color='red'): df = pd.DataFrame({'A': [0, np.nan]}) result = df.style.highlight_null()._compute().ctx expected = {(0, 0): [''], (1, 0): ['background-color: red']} assert result == expected def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=['A', 'A']) with pytest.raises(ValueError): df.style with pytest.raises(ValueError): Styler(df) def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() assert all(['caption' in result, 'foo' in result]) styler = self.df.style result = styler.set_caption('baz') assert styler is result assert styler.caption == 'baz' def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() assert 'abc123' in result styler = self.df.style result = styler.set_uuid('aaa') assert result is styler assert result.uuid == 'aaa' def test_unique_id(self): # See https://github.com/pandas-dev/pandas/issues/16780 df = pd.DataFrame({'a': [1, 3, 5, 6], 'b': [2, 4, 12, 21]}) result = df.style.render(uuid='test') assert 'test' in result ids = re.findall('id="(.*?)"', result) assert np.unique(ids).size == len(ids) def test_table_styles(self): style = [{'selector': 'th', 'props': [('foo', 'bar')]}] styler = Styler(self.df, table_styles=style) result = ' '.join(styler.render().split()) assert 'th { foo: bar; }' in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() assert 'class="foo" data-bar' in result result = self.df.style.set_table_attributes(attributes).render() assert 'class="foo" data-bar' in result def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) assert s.precision == 10 s = Styler(self.df, precision=2) assert s.precision == 2 s2 = s.set_precision(4) assert s is s2 assert s.precision == 4 def test_apply_none(self): def f(x): return pd.DataFrame(np.where(x == x.max(), 'color: red', ''), index=x.index, columns=x.columns) result = (pd.DataFrame([[1, 2], [3, 4]]) .style.apply(f, axis=None)._compute().ctx) assert result[(1, 1)] == ['color: red'] def test_trim(self): result = self.df.style.render() # trim=True assert result.count('#') == 0 result = self.df.style.highlight_max().render() assert result.count('#') == len(self.df.columns) def test_highlight_max(self): df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) # max(df) = min(-df) for max_ in [True, False]: if max_: attr = 'highlight_max' else: df = -df attr = 'highlight_min' result = getattr(df.style, attr)()._compute().ctx assert result[(1, 1)] == ['background-color: yellow'] result = getattr(df.style, attr)(color='green')._compute().ctx assert result[(1, 1)] == ['background-color: green'] result = getattr(df.style, attr)(subset='A')._compute().ctx assert result[(1, 0)] == ['background-color: yellow'] result = getattr(df.style, attr)(axis=0)._compute().ctx expected = {(1, 0): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 1): [''], (0, 0): ['']} assert result == expected result = getattr(df.style, attr)(axis=1)._compute().ctx expected = {(0, 1): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 0): [''], (1, 0): ['']} assert result == expected # separate since we cant negate the strs df['C'] = ['a', 'b'] result = df.style.highlight_max()._compute().ctx expected = {(1, 1): ['background-color: yellow']} result = df.style.highlight_min()._compute().ctx expected = {(0, 0): ['background-color: yellow']} def test_export(self): f = lambda x: 'color: red' if x > 0 else 'color: blue' g = lambda x, y, z: 'color: {z}'.format(z=z) \ if x > 0 else 'color: {z}'.format(z=z) style1 = self.styler style1.applymap(f)\ .applymap(g, y='a', z='b')\ .highlight_max() result = style1.export() style2 = self.df.style style2.use(result) assert style1._todo == style2._todo style2.render() def test_display_format(self): df = pd.DataFrame(np.random.random(size=(2, 2))) ctx = df.style.format("{:0.1f}")._translate() assert all(['display_value' in c for c in row] for row in ctx['body']) assert all([len(c['display_value']) <= 3 for c in row[1:]] for row in ctx['body']) assert len(ctx['body'][0][1]['display_value'].lstrip('-')) <= 3 def test_display_format_raises(self): df = pd.DataFrame(np.random.randn(2, 2)) with pytest.raises(TypeError): df.style.format(5) with pytest.raises(TypeError): df.style.format(True) def test_display_subset(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"}, subset=pd.IndexSlice[0, :])._translate() expected = '0.1' assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == '1.1234' assert ctx['body'][0][2]['display_value'] == '12.34%' raw_11 = '1.1234' ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == raw_11 ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == raw_11 ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice['a'])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][0][2]['display_value'] == '0.1234' ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, 'a'])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == raw_11 ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[[0, 1], ['a']])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == '1.1' assert ctx['body'][0][2]['display_value'] == '0.1234' assert ctx['body'][1][2]['display_value'] == '1.1234' def test_display_dict(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"})._translate() assert ctx['body'][0][1]['display_value'] == '0.1' assert ctx['body'][0][2]['display_value'] == '12.34%' df['c'] = ['aaa', 'bbb'] ctx = df.style.format({"a": "{:0.1f}", "c": str.upper})._translate() assert ctx['body'][0][1]['display_value'] == '0.1' assert ctx['body'][0][3]['display_value'] == 'AAA' def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1) def test_apply_bad_return(self): def f(x): return '' df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(TypeError): df.style._apply(f, axis=None) def test_apply_bad_labels(self): def f(x): return pd.DataFrame(index=[1, 2], columns=['a', 'b']) df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(f, axis=None) def test_get_level_lengths(self): index = pd.MultiIndex.from_product([['a', 'b'], [0, 1, 2]]) expected = {(0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_get_level_lengths_un_sorted(self): index = pd.MultiIndex.from_arrays([ [1, 1, 2, 1], ['a', 'b', 'b', 'd'] ]) expected = {(0, 0): 2, (0, 2): 1, (0, 3): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_mi_sparse(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body_0 = result['body'][0][0] expected_0 = { "value": "a", "display_value": "a", "is_visible": True, "type": "th", "attributes": ["rowspan=2"], "class": "row_heading level0 row0", "id": "level0_row0" } tm.assert_dict_equal(body_0, expected_0) body_1 = result['body'][0][1] expected_1 = { "value": 0, "display_value": 0, "is_visible": True, "type": "th", "class": "row_heading level1 row0", "id": "level1_row0" } tm.assert_dict_equal(body_1, expected_1) body_10 = result['body'][1][0] expected_10 = { "value": 'a', "display_value": 'a', "is_visible": False, "type": "th", "class": "row_heading level0 row1", "id": "level0_row1" } tm.assert_dict_equal(body_10, expected_10) head = result['head'][0] expected = [ {'type': 'th', 'class': 'blank', 'value': '', 'is_visible': True, "display_value": ''}, {'type': 'th', 'class': 'blank level0', 'value': '', 'is_visible': True, 'display_value': ''}, {'type': 'th', 'class': 'col_heading level0 col0', 'value': 'A', 'is_visible': True, 'display_value': 'A'}] assert head == expected def test_mi_sparse_disabled(self): with pd.option_context('display.multi_sparse', False): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body = result['body'] for row in body: assert 'attributes' not in row[0] def test_mi_sparse_index_names(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays( [['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) ) result = df.style._translate() head = result['head'][1] expected = [{ 'class': 'index_name level0', 'value': 'idx_level_0', 'type': 'th'}, {'class': 'index_name level1', 'value': 'idx_level_1', 'type': 'th'}, {'class': 'blank', 'value': '', 'type': 'th'}] assert head == expected def test_mi_sparse_column_names(self): df = pd.DataFrame( np.arange(16).reshape(4, 4), index=pd.MultiIndex.from_arrays( [['a', 'a', 'b', 'a'], [0, 1, 1, 2]], names=['idx_level_0', 'idx_level_1']), columns=pd.MultiIndex.from_arrays( [['C1', 'C1', 'C2', 'C2'], [1, 0, 1, 0]], names=['col_0', 'col_1'] ) ) result = df.style._translate() head = result['head'][1] expected = [ {'class': 'blank', 'value': '', 'display_value': '', 'type': 'th', 'is_visible': True}, {'class': 'index_name level1', 'value': 'col_1', 'display_value': 'col_1', 'is_visible': True, 'type': 'th'}, {'class': 'col_heading level1 col0', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'class': 'col_heading level1 col1', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, {'class': 'col_heading level1 col2', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'class': 'col_heading level1 col3', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, ] assert head == expected def test_hide_single_index(self): # GH 14194 # single unnamed index ctx = self.df.style._translate() assert ctx['body'][0][0]['is_visible'] assert ctx['head'][0][0]['is_visible'] ctx2 = self.df.style.hide_index()._translate() assert not ctx2['body'][0][0]['is_visible'] assert not ctx2['head'][0][0]['is_visible'] # single named index ctx3 = self.df.set_index('A').style._translate() assert ctx3['body'][0][0]['is_visible'] assert len(ctx3['head']) == 2 # 2 header levels assert ctx3['head'][0][0]['is_visible'] ctx4 = self.df.set_index('A').style.hide_index()._translate() assert not ctx4['body'][0][0]['is_visible'] assert len(ctx4['head']) == 1 # only 1 header levels assert not ctx4['head'][0][0]['is_visible'] def test_hide_multiindex(self): # GH 14194 df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays( [['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) ) ctx1 = df.style._translate() # tests for 'a' and '0' assert ctx1['body'][0][0]['is_visible'] assert ctx1['body'][0][1]['is_visible'] # check for blank header rows assert ctx1['head'][0][0]['is_visible'] assert ctx1['head'][0][1]['is_visible'] ctx2 = df.style.hide_index()._translate() # tests for 'a' and '0' assert not ctx2['body'][0][0]['is_visible'] assert not ctx2['body'][0][1]['is_visible'] # check for blank header rows assert not ctx2['head'][0][0]['is_visible'] assert not ctx2['head'][0][1]['is_visible'] def test_hide_columns_single_level(self): # GH 14194 # test hiding single column ctx = self.df.style._translate() assert ctx['head'][0][1]['is_visible'] assert ctx['head'][0][1]['display_value'] == 'A' assert ctx['head'][0][2]['is_visible'] assert ctx['head'][0][2]['display_value'] == 'B' assert ctx['body'][0][1]['is_visible'] # col A, row 1 assert ctx['body'][1][2]['is_visible'] # col B, row 1 ctx = self.df.style.hide_columns('A')._translate() assert not ctx['head'][0][1]['is_visible'] assert not ctx['body'][0][1]['is_visible'] # col A, row 1 assert ctx['body'][1][2]['is_visible'] # col B, row 1 # test hiding mulitiple columns ctx = self.df.style.hide_columns(['A', 'B'])._translate() assert not ctx['head'][0][1]['is_visible'] assert not ctx['head'][0][2]['is_visible'] assert not ctx['body'][0][1]['is_visible'] # col A, row 1 assert not ctx['body'][1][2]['is_visible'] # col B, row 1 def test_hide_columns_mult_levels(self): # GH 14194 # setup dataframe with multiple column levels and indices i1 = pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) i2 = pd.MultiIndex.from_arrays([['b', 'b'], [0, 1]], names=['col_level_0', 'col_level_1']) df = pd.DataFrame([[1, 2], [3, 4]], index=i1, columns=i2) ctx = df.style._translate() # column headers assert ctx['head'][0][2]['is_visible'] assert ctx['head'][1][2]['is_visible'] assert ctx['head'][1][3]['display_value'] == 1 # indices assert ctx['body'][0][0]['is_visible'] # data assert ctx['body'][1][2]['is_visible'] assert ctx['body'][1][2]['display_value'] == 3 assert ctx['body'][1][3]['is_visible'] assert ctx['body'][1][3]['display_value'] == 4 # hide top column level, which hides both columns ctx = df.style.hide_columns('b')._translate() assert not ctx['head'][0][2]['is_visible'] # b assert not ctx['head'][1][2]['is_visible'] # 0 assert not ctx['body'][1][2]['is_visible'] # 3 assert ctx['body'][0][0]['is_visible'] # index # hide first column only ctx = df.style.hide_columns([('b', 0)])._translate() assert ctx['head'][0][2]['is_visible'] # b assert not ctx['head'][1][2]['is_visible'] # 0 assert not ctx['body'][1][2]['is_visible'] # 3 assert ctx['body'][1][3]['is_visible'] assert ctx['body'][1][3]['display_value'] == 4 # hide second column and index ctx = df.style.hide_columns([('b', 1)]).hide_index()._translate() assert not ctx['body'][0][0]['is_visible'] # index assert ctx['head'][0][2]['is_visible'] # b assert ctx['head'][1][2]['is_visible'] # 0 assert not ctx['head'][1][3]['is_visible'] # 1 assert not ctx['body'][1][3]['is_visible'] # 4 assert ctx['body'][1][2]['is_visible'] assert ctx['body'][1][2]['display_value'] == 3
def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render()