def test_groupby_agg_err_catching(err_cls): # make sure we suppress anything other than TypeError or AssertionError # in _python_agg_general # Use a non-standard EA to make sure we don't go down ndarray paths from pandas.tests.extension.decimal.array import DecimalArray, make_data, to_decimal data = make_data()[:5] df = pd.DataFrame({ "id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data) }) expected = pd.Series(to_decimal([data[0], data[3]])) def weird_func(x): # weird function that raise something other than TypeError or IndexError # in _python_agg_general if len(x) == 0: raise err_cls return x.iloc[0] result = df["decimals"].groupby(df["id1"]).agg(weird_func) tm.assert_series_equal(result, expected, check_names=False)
def test_groupby_agg(): # Ensure that the result of agg is inferred to be decimal dtype # https://github.com/pandas-dev/pandas/issues/29141 data = make_data()[:5] df = pd.DataFrame( {"id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data)} ) # single key, selected column expected = pd.Series(to_decimal([data[0], data[3]])) result = df.groupby("id1")["decimals"].agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) result = df["decimals"].groupby(df["id1"]).agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) # multiple keys, selected column expected = pd.Series( to_decimal([data[0], data[1], data[3]]), index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 1)]), ) result = df.groupby(["id1", "id2"])["decimals"].agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) result = df["decimals"].groupby([df["id1"], df["id2"]]).agg(lambda x: x.iloc[0]) tm.assert_series_equal(result, expected, check_names=False) # multiple columns expected = pd.DataFrame({"id2": [0, 1], "decimals": to_decimal([data[0], data[3]])}) result = df.groupby("id1").agg(lambda x: x.iloc[0]) tm.assert_frame_equal(result, expected, check_names=False)
def test_groupby_agg_ea_method(monkeypatch): # Ensure that the result of agg is inferred to be decimal dtype # https://github.com/pandas-dev/pandas/issues/29141 def DecimalArray__my_sum(self): return np.sum(np.array(self)) monkeypatch.setattr(DecimalArray, "my_sum", DecimalArray__my_sum, raising=False) data = make_data()[:5] df = pd.DataFrame({"id": [0, 0, 0, 1, 1], "decimals": DecimalArray(data)}) expected = pd.Series(to_decimal([data[0] + data[1] + data[2], data[3] + data[4]])) result = df.groupby("id")["decimals"].agg(lambda x: x.values.my_sum()) tm.assert_series_equal(result, expected, check_names=False) s = pd.Series(DecimalArray(data)) result = s.groupby(np.array([0, 0, 0, 1, 1])).agg(lambda x: x.values.my_sum()) tm.assert_series_equal(result, expected, check_names=False)
def test_indexing_no_materialize(monkeypatch): # See https://github.com/pandas-dev/pandas/issues/29708 # Ensure that indexing operations do not materialize (convert to a numpy # array) the ExtensionArray unnecessary def DecimalArray__array__(self, dtype=None): raise Exception("tried to convert a DecimalArray to a numpy array") monkeypatch.setattr(DecimalArray, "__array__", DecimalArray__array__, raising=False) data = make_data() s = pd.Series(DecimalArray(data)) df = pd.DataFrame({"a": s, "b": range(len(s))}) # ensure the following operations do not raise an error s[s > 0.5] df[s > 0.5] s.at[0] df.at[0, "a"]
def data(): return DecimalArray(make_data())