Example #1
0
def test_write_constraint():
    """'constraint' argument to writer.write_dataset."""
    with specimen("ng-ts.xml") as f:
        msg = pandasdmx.read_sdmx(f)

    # Fetch the message's DSD
    assert msg.structure.is_external_reference
    # NB the speciment included in tests/data has 'ECB_EXR_NG' as the
    #    data structure ID; but a query against the web service gives
    #    'ECB_EXR1' for the same data structure.
    id = "ECB_EXR1"
    dsd = (
        pandasdmx.Request(msg.structure.maintainer.id)
        .get("datastructure", id)
        .structure[id]
    )

    # Create a ContentConstraint
    cc = dsd.make_constraint({"CURRENCY": "JPY+USD"})

    # Write the message without constraint
    s1 = pandasdmx.to_pandas(msg)
    assert len(s1) == 12
    assert set(s1.index.to_frame()["CURRENCY"]) == {"CHF", "GBP", "JPY", "USD"}

    # Writing using constraint produces a fewer items; only those matching the
    # constraint
    s2 = pandasdmx.to_pandas(msg, constraint=cc)
    assert len(s2) == 6
    assert set(s2.index.to_frame()["CURRENCY"]) == {"JPY", "USD"}
 def test_freq_in_series_attribute(self, req):
     # Test that we don't have regression on Issues #39 and #41
     # INSEE time series provide the FREQ value as attribute on the series
     # instead of a dimension. This caused a runtime error when writing as
     # pandas dataframe.
     data_response = pandasdmx.read_sdmx(SERIES["UNEMPLOYMENT_CAT_A_B_C"]["data-fp"])
     pandasdmx.to_pandas(data_response)
Example #3
0
def test_write_codelist():
    # Retrieve codelists from a test specimen and convert to pandas
    with specimen('common-structure.xml') as f:
        dsd_common = sdmx.read_sdmx(f)
    codelists = sdmx.to_pandas(dsd_common)['codelist']

    # File contains 5 code lists
    assert len(codelists) == 5

    # Code lists have expected number of items
    assert len(codelists['CL_FREQ']) == 8

    # Items names can be retrieved by ID
    freq = codelists['CL_FREQ']
    assert freq['A'] == 'Annual'

    # Non-hierarchical code list has a string name
    assert freq.name == 'Code list for Frequency (FREQ)'

    # Hierarchical code list
    with specimen('codelist_partial.xml') as f:
        msg = sdmx.read_sdmx(f)

    # Convert single codelist
    CL_AREA = sdmx.to_pandas(msg.codelist['CL_AREA'])

    # Hierichical list has a 'parent' column; parent of Africa is the World
    assert CL_AREA.loc['002', 'parent'] == '001'

    # Pandas features can be used to merge parent names
    area_hierarchy = pd.merge(CL_AREA, CL_AREA,
                              how='left', left_on='parent', right_index=True,
                              suffixes=('', '_parent'))
    assert area_hierarchy.loc['002', 'name_parent'] == 'World'
Example #4
0
def test_write_constraint():
    """'constraint' argument to writer.write_dataset."""
    with specimen('ng-ts.xml') as f:
        msg = sdmx.read_sdmx(f)

    # Fetch the message's DSD
    assert msg.structure.is_external_reference
    # NB the speciment included in tests/data has 'ECB_EXR_NG' as the
    #    data structure ID; but a query against the web service gives
    #    'ECB_EXR1' for the same data structure.
    id = 'ECB_EXR1'
    dsd = sdmx.Request(msg.structure.maintainer.id) \
              .get('datastructure', id) \
              .structure[id]

    # Create a ContentConstraint
    cc = dsd.make_constraint({'CURRENCY': 'JPY+USD'})

    # Write the message without constraint
    s1 = sdmx.to_pandas(msg)
    assert len(s1) == 12
    assert set(s1.index.to_frame()['CURRENCY']) == {'CHF', 'GBP', 'JPY', 'USD'}

    # Writing using constraint produces a fewer items; only those matching the
    # constraint
    s2 = sdmx.to_pandas(msg, constraint=cc)
    assert len(s2) == 6
    assert set(s2.index.to_frame()['CURRENCY']) == {'JPY', 'USD'}
 def test_write2pandas(self, msg):
     df = pandasdmx.to_pandas(msg, attributes="")
     assert isinstance(df, pd.Series)
     assert df.shape == (12,)
     # with metadata
     df = pandasdmx.to_pandas(msg, attributes="osgd")
     assert df.shape == (12, 8)
     assert df.iloc[1].OBS_STATUS == "A"
Example #6
0
def test_write_data_arguments():
    msg = sdmx.read_sdmx(test_files(kind='data')['argvalues'][0])

    # Attributes must be a string
    with raises(TypeError):
        sdmx.to_pandas(msg, attributes=2)

    # Attributes must contain only 'dgso'
    with raises(ValueError):
        sdmx.to_pandas(msg, attributes='foobarbaz')
Example #7
0
    def test_to_pandas(self, msg):
        # Single data series is converted to pd.Series
        data_series = sdmx.to_pandas(msg.data[0])
        assert isinstance(data_series, pd.Series)

        # When len(msg.data) is 1, the data series in a single Dataset are
        # unwrapped automatically
        assert len(msg.data) == 1
        data_series2 = sdmx.to_pandas(msg.data)  # NB no '[0]' index
        pdt.assert_series_equal(data_series, data_series2)
Example #8
0
def test_write_data_arguments():
    msg = pandasdmx.read_sdmx(test_files(kind="data")["argvalues"][0])

    # Attributes must be a string
    with raises(TypeError):
        pandasdmx.to_pandas(msg, attributes=2)

    # Attributes must contain only 'dgso'
    with raises(ValueError):
        pandasdmx.to_pandas(msg, attributes="foobarbaz")
Example #9
0
    def test_write2pandas(self, msg):
        df = sdmx.to_pandas(msg, attributes='')

        assert isinstance(df, pd.Series)

        assert df.shape == (12, )

        # with metadata
        df = sdmx.to_pandas(msg, attributes='osgd')
        df, mdf = df.iloc[:, 0], df.iloc[:, 1:]
        assert mdf.shape == (12, 7)
        assert mdf.iloc[1].OBS_STATUS == 'A'
Example #10
0
    def test_endpoints(self, req, endpoint, args):
        # See pytest_generate_tests() for values of 'endpoint'
        cache = self._cache_path.with_suffix(f".{endpoint}.xml")
        result = req.get(endpoint, tofile=cache, **args)

        # For debugging
        # print(cache, cache.read_text(), result, sep='\n\n')
        # assert False

        pandasdmx.to_pandas(result)

        del result
Example #11
0
def test_exr_constraints():
    with specimen("1/structure-full.xml") as f:
        m = pandasdmx.read_sdmx(f)
    ECB_EXR1 = m.structure["ECB_EXR1"]

    # Test DimensionDescriptor
    dd = ECB_EXR1.dimensions

    # Correct order
    assert dd[0].id == "FREQ"

    # Correct number of dimensions
    assert len(dd.components) == 6

    # Dimensions can be retrieved by name; membership can be tested
    assert "W" in dd.get("FREQ")

    # Similar tests for AttributeDescriptor
    ad = ECB_EXR1.attributes
    assert len(ad.components) == 24
    assert ad[-1].id == "UNIT_MULT"
    assert "5" in ad.get("UNIT_MULT")

    pytest.xfail("constrained codes not implemented")
    assert len(m._constrained_codes), 14

    assert "W" not in m._constrained_codes.FREQ

    key = {"FREQ": ["W"]}

    assert m.in_codes(key)

    assert not m.in_constraints(key, raise_error=False)

    with pytest.raises(ValueError):
        m.in_constraints(key)

    assert m.in_constraints({"CURRENCY": ["CHF"]})

    # test with invalid key
    with pytest.raises(TypeError):
        m._in_constraints({"FREQ": "A"})

    # structure writer with constraints
    out = pandasdmx.to_pandas(m)
    cl = out.codelist
    assert cl.shape == (3555, 2)

    # unconstrained codelists
    out = pandasdmx.to_pandas(m, constraint=False)
    cl = out.codelist
    assert cl.shape, (4177, 2)
Example #12
0
def test_exr_constraints():
    with specimen('1/structure-full.xml') as f:
        m = sdmx.read_sdmx(f)
    ECB_EXR1 = m.structure['ECB_EXR1']

    # Test DimensionDescriptor
    dd = ECB_EXR1.dimensions

    # Correct order
    assert dd[0].id == 'FREQ'

    # Correct number of dimensions
    assert len(dd.components) == 6

    # Dimensions can be retrieved by name; membership can be tested
    assert 'W' in dd.get('FREQ')

    # Similar tests for AttributeDescriptor
    ad = ECB_EXR1.attributes
    assert len(ad.components) == 24
    assert ad[-1].id == 'UNIT_MULT'
    assert '5' in ad.get('UNIT_MULT')

    pytest.xfail('constrained codes not implemented')  # TODO
    assert len(m._constrained_codes), 14

    assert 'W' not in m._constrained_codes.FREQ

    key = {'FREQ': ['W']}

    assert m.in_codes(key)

    assert not m.in_constraints(key, raise_error=False)

    with pytest.raises(ValueError):
        m.in_constraints(key)

    assert m.in_constraints({'CURRENCY': ['CHF']})

    # test with invalid key
    with pytest.raises(TypeError):
        m._in_constraints({'FREQ': 'A'})

    # structure writer with constraints
    out = sdmx.to_pandas(m)
    cl = out.codelist
    assert cl.shape == (3555, 2)

    # unconstrained codelists
    out = sdmx.to_pandas(m, constraint=False)
    cl = out.codelist
    assert cl.shape, (4177, 2)
Example #13
0
def test_flat():
    # Create a bare Message
    msg = DataMessage()

    # Recreate the content from exr-flat.json
    header = Header(
        id="62b5f19d-f1c9-495d-8446-a3661ed24753",
        prepared="2012-11-29T08:40:26Z",
        sender=model.Agency(id="ECB"),
    )
    msg.header = header

    ds = DataSet()

    # Create a Key and attributes
    key = Key(
        FREQ="D",
        CURRENCY="NZD",
        CURRENCY_DENOM="EUR",
        EXR_TYPE="SP00",
        EXR_SUFFIX="A",
        TIME_PERIOD="2013-01-18",
    )
    obs_status = DataAttribute(id="OBS_STATUS")
    attr = {"OBS_STATUS": AttributeValue(value_for=obs_status, value="A")}

    ds.obs.append(
        Observation(dimension=key, value=1.5931, attached_attribute=attr))

    key = key.copy(TIME_PERIOD="2013-01-21")
    ds.obs.append(
        Observation(dimension=key, value=1.5925, attached_attribute=attr))

    key = key.copy(CURRENCY="RUB", TIME_PERIOD="2013-01-18")
    ds.obs.append(
        Observation(dimension=key, value=40.3426, attached_attribute=attr))

    key = key.copy(TIME_PERIOD="2013-01-21")
    ds.obs.append(
        Observation(dimension=key, value=40.3000, attached_attribute=attr))

    msg.data.append(ds)

    # Write to pd.Dataframe
    df1 = pandasdmx.to_pandas(msg)

    with specimen("flat.json") as f:
        ref = pandasdmx.read_sdmx(f)
    df2 = pandasdmx.to_pandas(ref)

    assert_pd_equal(df1, df2)
Example #14
0
def test_flat():
    # Create a bare Message
    msg = DataMessage()

    # Recreate the content from exr-flat.json
    header = Header(
        id='62b5f19d-f1c9-495d-8446-a3661ed24753',
        prepared='2012-11-29T08:40:26Z',
        sender='ECB',
    )
    msg.header = header

    ds = DataSet()

    # Create a Key and attributes
    key = Key(FREQ='D',
              CURRENCY='NZD',
              CURRENCY_DENOM='EUR',
              EXR_TYPE='SP00',
              EXR_SUFFIX='A',
              TIME_PERIOD='2013-01-18')
    obs_status = DataAttribute(id='OBS_STATUS')
    attr = {'OBS_STATUS': AttributeValue(value_for=obs_status, value='A')}

    ds.obs.append(
        Observation(dimension=key, value=1.5931, attached_attribute=attr))

    key = key.copy(TIME_PERIOD='2013-01-21')
    ds.obs.append(
        Observation(dimension=key, value=1.5925, attached_attribute=attr))

    key = key.copy(CURRENCY='RUB', TIME_PERIOD='2013-01-18')
    ds.obs.append(
        Observation(dimension=key, value=40.3426, attached_attribute=attr))

    key = key.copy(TIME_PERIOD='2013-01-21')
    ds.obs.append(
        Observation(dimension=key, value=40.3000, attached_attribute=attr))

    msg.data.append(ds)

    # Write to pd.Dataframe
    df1 = sdmx.to_pandas(msg)

    with specimen('flat.json') as f:
        ref = sdmx.read_sdmx(f)
    df2 = sdmx.to_pandas(ref)

    assert_pd_equal(df1, df2)
Example #15
0
def test_doc_index1():
    """First code example in index.rst."""
    estat = Request('ESTAT')
    flow_response = estat.dataflow('une_rt_a')

    with pytest.raises(TypeError):
        # This presumes the DataStructureDefinition instance can conduct a
        # network request for its own content
        structure_response = flow_response.dataflow.une_rt_a.structure(
            request=True, target_only=False)

    # Same effect
    structure_response = estat.get(
        'datastructure', flow_response.dataflow.une_rt_a.structure.id)

    # Even better: Request.get(…) should examine the class and ID of the object
    # structure = estat.get(flow_response.dataflow.une_rt_a.structure)

    # Show some codelists
    s = sdmx.to_pandas(structure_response)
    expected = pd.Series({
        'AT': 'Austria',
        'BE': 'Belgium',
        'BG': 'Bulgaria',
        'CH': 'Switzerland',
        'CY': 'Cyprus',
        }, name='GEO') \
        .rename_axis('CL_GEO')

    # Codelists are converted to a DictLike
    assert isinstance(s.codelist, DictLike)

    # Same effect
    assert_pd_equal(s.codelist['CL_GEO'].sort_index().head(), expected)
Example #16
0
def test_write_dataflow():
    # Read the INSEE dataflow definition
    with specimen('INSEE/dataflow') as f:
        msg = sdmx.read_sdmx(f)

    # Convert to pandas
    result = sdmx.to_pandas(msg, include='dataflow')

    # Number of Dataflows described in the file
    assert len(result['dataflow']) == 663

    # ID and names of first Dataflows
    mbop = 'Monthly Balance of Payments - '
    expected = pd.Series({
        'ACT-TRIM-ANC':
        'Activity by sex and age - Quarterly series',
        'BPM6-CCAPITAL':
        '{}Capital account'.format(mbop),
        'BPM6-CFINANCIER':
        '{}Financial account'.format(mbop),
        'BPM6-CTRANSACTION':
        '{}Current transactions account'.format(mbop),
        'BPM6-TOTAL':
        '{}Overall total and main headings'.format(mbop),
    })
    assert_pd_equal(result['dataflow'].head(), expected)
Example #17
0
def _get_dimensions_1(structure_message):
    # pandasdmx v1
    (dsd, ) = structure_message.structure.values()  # unpack exactly 1 table
    dimension_names = pandasdmx.to_pandas(dsd.dimensions)

    codelist = pandasdmx.to_pandas(structure_message.codelist)

    dimension_items = {
        name.lower(): codelist[f"CL_{name}"]
        for name in dimension_names if name not in _EXCLUDED_DIMENSIONS
    }

    dimensions = (pd.concat(dimension_items).rename_axis(
        ["dimension", "code"]).rename("label").to_frame())

    return dimensions
Example #18
0
def test_doc_usage_data():
    """Code examples in usage.rst."""
    ecb = Request('ECB')

    data_response = ecb.data(resource_id='EXR', key={'CURRENCY': 'USD+JPY'},
                             params={'startPeriod': '2016',
                                     'endPeriod': '2016-12-31'})
    # # Commented: do the same without triggering requests for validation
    # data_response = ecb.data(resource_id='EXR', key='.JPY+USD...',
    #                          params={'startPeriod': '2016',
    #                                  'endPeriod': '2016-12-31'})
    data = data_response.data[0]

    assert type(data) is DataSet

    # This message doesn't explicitly specify the remaining dimensions; unless
    # they are inferred from the SeriesKeys, then the DimensionDescriptor is
    # not complete
    # assert data.structured_by.dimensions[-1] == 'TIME_PERIOD'
    # data.dim_at_obs

    series_keys = list(data.series)

    assert len(series_keys) == 16

    series_keys[5]

    assert (sorted(set(sk.FREQ.value for sk in data.series))
            == 'A D H M Q'.split())

    daily = sdmx.to_pandas(data).xs('D', level='FREQ')
    assert len(daily) == 514

    assert_pd_equal(daily.tail().values,
                    np.array([1.0446, 1.0445, 1.0401, 1.0453, 1.0541]))
Example #19
0
def test_write_conceptscheme():
    with specimen('common-structure.xml') as f:
        msg = sdmx.read_sdmx(f)
        data = sdmx.to_pandas(msg)

    cdc = data['concept_scheme']['CROSS_DOMAIN_CONCEPTS']
    assert cdc.loc['UNIT_MEASURE', 'name'] == 'Unit of Measure'
Example #20
0
def test_doc_howto_timeseries():
    with specimen("sg-ts.xml") as f:
        ds = pandasdmx.read_sdmx(f).data[0]

    # Convert to pd.Series and unstack the time dimension to columns
    base = pandasdmx.to_pandas(ds)
    s1 = base.unstack("TIME_PERIOD")

    # DatetimeIndex on columns
    s1.columns = pd.to_datetime(s1.columns)
    assert isinstance(s1.columns, pd.DatetimeIndex)

    # DatetimeIndex on index
    s2 = base.unstack("TIME_PERIOD").transpose()
    s2.index = pd.to_datetime(s2.index)
    assert isinstance(s2.index, pd.DatetimeIndex)

    # Same with pd.PeriodIndex
    s3 = s1.to_period(axis=1)
    assert isinstance(s3.columns, pd.PeriodIndex)
    assert s3.columns.freqstr == "M"

    s4 = s2.to_period(axis=0)
    assert isinstance(s4.index, pd.PeriodIndex)
    assert s4.index.freqstr == "M"
Example #21
0
def dump_dimension(dsd, dim_name: str, all: bool = False):
    if all:
        print(dsd.dimensions.components)
        print(dsd.attributes.components)
    e = dsd.dimensions.get(dim_name).local_representation.enumerated
    df = sdmx.to_pandas(e)
    print(df)
Example #22
0
def test_write_conceptscheme():
    with specimen("common-structure.xml") as f:
        msg = pandasdmx.read_sdmx(f)
        data = pandasdmx.to_pandas(msg)

    cdc = data["concept_scheme"]["CROSS_DOMAIN_CONCEPTS"]
    assert cdc.loc["UNIT_MEASURE", "name"] == "Unit of Measure"
Example #23
0
def fetch_dataset(db_collection, flow_name: str, parameters):
    # 1. try CSV fetch, if that doesnt work then try PandasSDMX to get the dataframe
    data_response = requests.get(url,
                                 params=parameters,
                                 headers={"Accept": "text/csv"})
    assert data_response.status_code == 200
    with get_tempfile() as fp:
        fp.write(data_response.text.encode())
        fp.seek(0)
        kwargs = ({} if not flow_name in extra_csv_parms else dict(
            **extra_csv_parms[flow_name]))
        try:
            df = pd.read_csv(fp, **kwargs)
            save_dataframe(db_collection, {}, df, url, "ECB")
            return
        except pd.errors.EmptyDataError:  # no data is ignored as far as --fail-fast is concerned
            print(
                f"No CSV data to save.. now trying {flow_name} using pandasdmx"
            )
            # FALLTHRU...

    # 2. try pandassdmx if CSV fetch fails
    ecb = sdmx.Request("ECB", backend="memory")
    data_msg = ecb.data(flow_name, params=parameters)
    df = sdmx.to_pandas(data_msg)
    assert isinstance(df, pd.DataFrame)
    save_dataframe(db_collection, {}, df, url, "ECB")
Example #24
0
def get_available_of_dimension(dsd: sdmx.model.DataStructureDefinition,
                               dim_name: str):
    dim = dsd.dimensions.get(dim_name).local_representation.enumerated
    available_results = sdmx.to_pandas(dim)
    #print(type(available_results))
    assert isinstance(available_results, pd.Series)
    return available_results
Example #25
0
def get_df(data_response, Logger):
    try:
        oecd_data = data_response
        df = pandasdmx.to_pandas(oecd_data,
                                 datetime=dict(dim='TIME_PERIOD', axis=1))
    except req.exceptions.ConnectionError as err:
        Logger.critical(f'response took too long, this is the error: {err}')
    return df
Example #26
0
    def test_pandas(self, msg):
        data = msg.data[0]

        series_keys = list(data.series.keys())

        # Number of series in dataframe
        assert len(series_keys) == 4

        # Convert the observations for one SeriesKey to a pd.Series
        s3_key = series_keys[3]
        s3 = sdmx.to_pandas(data.series[s3_key])
        assert isinstance(s3, pd.Series)

        # Test a particular value
        assert s3[0] == 1.2894

        # Length of index
        assert len(s3.index.names) == 6

        # Convert again, with attributes
        pd_data = sdmx.to_pandas(data, attributes='osgd')

        # Select one SeriesKey's data out of the DataFrame
        keys, levels = zip(*[(kv.value, kv.id) for kv in s3_key])
        s3 = pd_data.xs(keys, level=levels, drop_level=False)

        # Get the value of the first observation
        assert s3.iloc[0].value == 1.2894

        # Length of index
        assert len(s3.index.names) == 6

        # Number of attributes available
        assert len(set(s3.columns) - {'value'}) == 7

        # Access an attribute of the first value.
        # NB that this uses…
        # 1. the *pandas* attribute access shorthand, NOT DictLike:
        #    "s3.iloc[0]" is a single row of s3, i.e. a pd.Series; and
        #    ".OBS_STATUS" accesses the ps.Series element associated with that
        #    key in the index
        # 2. the AttributeValue.__eq__() comparison operator;
        #    s3.iloc[0].OBS_STATUS is a full AttributeValue, rather than a str.
        assert s3.iloc[0].OBS_STATUS == 'A'
        assert s3.iloc[0].OBS_STATUS.value_for == 'OBS_STATUS'  # consistency!
Example #27
0
def test_write_categoryscheme():
    with specimen("IPI-2010-A21-structure.xml") as f:
        msg = pandasdmx.read_sdmx(f)
        data = pandasdmx.to_pandas(msg)

    cs = data["category_scheme"]["CLASSEMENT_DATAFLOWS"]

    assert cs.loc["COMPTA-NAT", "name"] == "National accounts (GDP, consumption...)"

    # Children appear
    assert cs.loc["CNA-PIB-2005", "parent"] == "CNA-PIB"
Example #28
0
def test_write_data(data_path):
    msg = sdmx.read_sdmx(data_path)

    result = sdmx.to_pandas(msg)

    expected = expected_data(data_path)
    if expected is not None:
        print(expected, result, sep='\n')
    assert_pd_equal(expected, result)

    # TODO incomplete
    assert isinstance(result, (pd.Series, pd.DataFrame, list)), type(result)
Example #29
0
def test_doc_example():
    """Code from example.rst."""
    import pandasdmx

    estat = pandasdmx.Request("ESTAT")

    metadata = estat.datastructure("DSD_une_rt_a")

    for cl in "CL_AGE", "CL_UNIT":
        print(pandasdmx.to_pandas(metadata.codelist[cl]))

    resp = estat.data("une_rt_a",
                      key={"GEO": "EL+ES+IE"},
                      params={"startPeriod": "2007"})

    data = pandasdmx.to_pandas(resp,
                               datetime=dict(dim='TIME_PERIOD',
                                             freq='FREQ')).xs("Y15-74",
                                                              axis=1,
                                                              level="AGE",
                                                              drop_level=False)

    data.loc[:, ("Y15-74", "PC_ACT", "T")]

    # Further checks per https://github.com/dr-leo/pandaSDMX/issues/157

    # DimensionDescriptor for the structure message
    dd1 = metadata.structure.DSD_une_rt_a.dimensions

    # DimensionDescriptor retrieved whilst validating the data message
    dd2 = resp.data[0].structured_by.dimensions

    # DimensionDescriptors have same ID, components and order
    assert dd1 == dd2

    # One SeriesKey from the data message
    sk = list(resp.data[0].series.keys())[0]

    # Key values have same order as in the DSD
    assert dd1.order_key(sk) == sk
Example #30
0
def test_write_categoryscheme():
    with specimen('IPI-2010-A21-structure.xml') as f:
        msg = sdmx.read_sdmx(f)
        print(msg.category_scheme)
        data = sdmx.to_pandas(msg)

    cs = data['category_scheme']['CLASSEMENT_DATAFLOWS']

    assert (cs.loc['COMPTA-NAT',
                   'name'] == 'National accounts (GDP, consumption...)')

    # Children appear
    assert cs.loc['CNA-PIB-2005', 'parent'] == 'CNA-PIB'