Example #1
0
      bfs = 12
    sfs = bfs - 2

    params = { 'axes.labelsize': bfs,
                'text.fontsize': bfs,
              'legend.fontsize': bfs,
              'xtick.labelsize': sfs,
              'ytick.labelsize': sfs}
    pylab.rcParams.update(params)

    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

    # 1st data file defines labels and parameter ranges:
    if k == 0:
 
      alllabels,alllimits,usedylimits = pappy.read_header(datafiles[k])
      if (usedylimits and vb): print 'No axis limits found, using 5-sigma ranges'
      
      # Now pull out just the labels and limits we need:
      limits = numpy.zeros([npars,2])
      ii = 0
      for i in index:
        limits[ii,:] = alllimits[i,:]
        ii = ii + 1
      labels = alllabels[:]

    # Set up dynamic axis limits, and smoothing scales:
    dylimits = numpy.zeros([npars,2])
    smooth = numpy.zeros(npars)
    for i in range(npars):
      col = index[i]
Example #2
0
      bfs = 10
    sfs = bfs - 2

    params = { 'axes.labelsize': bfs,
                'text.fontsize': bfs,
              'legend.fontsize': bfs,
              'xtick.labelsize': sfs,
              'ytick.labelsize': sfs}
    pylab.rcParams.update(params)

    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

    # 1st data file defines labels and parameter ranges:
    if k == 0:
 
      alllabels,alllimits,usedylimits = pappy.read_header(datafiles[k])
      if vb: print 'No axis limits found, using 5-sigma ranges'
      
      # Now pull out just the labels and limits we need:
      limits = numpy.zeros([npars,2])
      ii = 0
      for i in index:
        limits[ii,:] = alllimits[i,:]
        ii = ii + 1
      labels = alllabels[:]

    # Set up dynamic axis limits, and smoothing scales:
    dylimits = numpy.zeros([npars,2])
    smooth = numpy.zeros(npars)
    for i in range(npars):
      col = index[i]
Example #3
0
  else:
    Lhood = 0.0*data[:,0].copy() + 1.0

  # Having done all that, optionally overwrite index with specified list
  # of column numbers. Note conversion to zero-indexed python:
  if columns != 'All':
    pieces = columns.split(',')
    index = []
    for piece in pieces:
      index.append(int(piece) - 1)
    npars = len(index)
    if vb: print "Only using data in",npars,"columns (",index,"): "

  # Now parameter list is in index - which is fixed for other datasets

  labels,limits,dummy = pappy.read_header(datafile)

# --------------------------------------------------------------------
# Loop over parameters, doing calculations:
  
  for i in range(npars):

    col = index[i]

    d = data[:,col].copy()

    mean,stdev,Neff,N95 = pappy.meansd(d,wht=wht)
    
    if histogram:
      dylimits = numpy.zeros([2])
      dylimits[0] = mean - 10*stdev