Example #1
0
def rejection(model, condition, query, num_samples):
    samples = []
    for _ in range(int(num_samples / 100)):
        samples += mapp(lambda _: single_rejection(model, condition, query),
                        range(100))
    if num_samples % 100:
        samples += mapp(lambda _: single_rejection(model, condition, query),
                        range(num_samples % 100))
    return samples
Example #2
0
def rejection(model, condition, query, num_samples):
    samples = []
    for _ in range(int(num_samples / 100)):
        samples += mapp(lambda _: single_rejection(model, condition, query),
                        range(100))
    if num_samples % 100:
        samples += mapp(lambda _: single_rejection(model, condition, query),
                        range(num_samples % 100))
    return samples
Example #3
0
def test_hierarchical():

    ELEMENTS_PER_BAG = 10

    observed_samples = {
        0: 1,
        1: 1,
        2: 1,
        3: 1,
        4: 1,
        5: 10,
        6: 10,
        7: 10,
        8: 10,
        9: 10
        }

    def model(init_world, tick, data=observed_samples):
        world = init_world.copy()
        num_bag_types = church_geometric(world, "num_bag_types", tick, .4)
        bag_ps = [church_uniform(world, "bag_type_p_%i" % i, tick, 0, 1)
                  for i in range(num_bag_types)]
        bag_samples = {}
        for bag in data.keys():
            bag_p = church_listdraw(world, "bag_p_%i" % bag, tick, bag_ps)
            bag_k = church_binomial_fixed(world, "bag_k_%i" % bag, tick,
                                          ELEMENTS_PER_BAG, bag_p, fixed_val=data[bag])
            bag_samples[bag] = bag_k
        return (world, {"num_bag_types": num_bag_types,
                        "bag_samples": bag_samples})

    def condition(val, data=observed_samples):
        return val["bag_samples"] == data

    def query(val, data=observed_samples):
        return val["num_bag_types"]

    def getdata(num_clusters):
        data = {}
        for i in range(10):
            data[i] = ((i % num_clusters) + 1) * 20
        return data

    random_seed(10)

    def runmcmc():
        mcmc_results = mcmc(model, condition, query, num_steps=100, runtime=5 * 60)
        mcmc_samples = mcmc_results["samples"]
        return ("mcmc", len(mcmc_samples), histogram(mcmc_samples))

    all_results = mapp(lambda f: f(), [runmcmc] * 5)
    for result in all_results:
        print result
Example #4
0
	def parallel(self):
		def parfor(i):
			self.values[i] = i
		mapp(parfor, range(self.values.size))
Example #5
0
def test_hierarchical():

    ELEMENTS_PER_BAG = 10

    observed_samples = {
        0: 1,
        1: 1,
        2: 1,
        3: 1,
        4: 1,
        5: 10,
        6: 10,
        7: 10,
        8: 10,
        9: 10
    }

    def model(init_world, tick, data=observed_samples):
        world = init_world.copy()
        num_bag_types = church_geometric(world, "num_bag_types", tick, .4)
        bag_ps = [
            church_uniform(world, "bag_type_p_%i" % i, tick, 0, 1)
            for i in range(num_bag_types)
        ]
        bag_samples = {}
        for bag in data.keys():
            bag_p = church_listdraw(world, "bag_p_%i" % bag, tick, bag_ps)
            bag_k = church_binomial_fixed(world,
                                          "bag_k_%i" % bag,
                                          tick,
                                          ELEMENTS_PER_BAG,
                                          bag_p,
                                          fixed_val=data[bag])
            bag_samples[bag] = bag_k
        return (world, {
            "num_bag_types": num_bag_types,
            "bag_samples": bag_samples
        })

    def condition(val, data=observed_samples):
        return val["bag_samples"] == data

    def query(val, data=observed_samples):
        return val["num_bag_types"]

    def getdata(num_clusters):
        data = {}
        for i in range(10):
            data[i] = ((i % num_clusters) + 1) * 20
        return data

    random_seed(10)

    def runmcmc():
        mcmc_results = mcmc(model,
                            condition,
                            query,
                            num_steps=100,
                            runtime=5 * 60)
        mcmc_samples = mcmc_results["samples"]
        return ("mcmc", len(mcmc_samples), histogram(mcmc_samples))

    all_results = mapp(lambda f: f(), [runmcmc] * 5)
    for result in all_results:
        print result