def train(config): net = BertForMaskedLM.from_pretrained(config.model) lossFunc = KLDivLoss(config) if torch.cuda.is_available(): net = net.cuda() lossFunc = lossFunc.cuda() if config.dataParallel: net = DataParallelModel(net) lossFunc = DataParallelCriterion(lossFunc) options = optionsLoader(LOG, config.optionFrames, disp=False) Tokenizer = BertTokenizer.from_pretrained(config.model) prepareFunc = prepare_data trainSet = Dataset('train', config.batch_size, lambda x: len(x[0]) + len(x[1]), prepareFunc, Tokenizer, options['dataset'], LOG, 'train') validSet = Dataset('valid', config.batch_size, lambda x: len(x[0]) + len(x[1]), prepareFunc, Tokenizer, options['dataset'], LOG, 'valid') print(trainSet.__len__()) Q = [] best_vloss = 1e99 counter = 0 lRate = config.lRate prob_src = config.prob_src prob_tgt = config.prob_tgt num_train_optimization_steps = trainSet.__len__( ) * options['training']['stopConditions']['max_epoch'] param_optimizer = list(net.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = BertAdam(optimizer_grouped_parameters, lr=lRate, e=1e-9, t_total=num_train_optimization_steps, warmup=0.0) for epoch_idx in range(options['training']['stopConditions']['max_epoch']): total_seen = 0 total_similar = 0 total_unseen = 0 total_source = 0 trainSet.setConfig(config, prob_src, prob_tgt) trainLoader = data.DataLoader(dataset=trainSet, batch_size=1, shuffle=True, num_workers=config.dataLoader_workers, pin_memory=True) validSet.setConfig(config, 0.0, prob_tgt) validLoader = data.DataLoader(dataset=validSet, batch_size=1, shuffle=False, num_workers=config.dataLoader_workers, pin_memory=True) for batch_idx, batch_data in enumerate(trainLoader): if (batch_idx + 1) % 10000 == 0: gc.collect() start_time = time.time() net.train() inputs, positions, token_types, labels, masks, batch_seen, batch_similar, batch_unseen, batch_source = batch_data inputs = inputs[0].cuda() positions = positions[0].cuda() token_types = token_types[0].cuda() labels = labels[0].cuda() masks = masks[0].cuda() total_seen += batch_seen total_similar += batch_similar total_unseen += batch_unseen total_source += batch_source n_token = int((labels.data != 0).data.sum()) predicts = net(inputs, positions, token_types, masks) loss = lossFunc(predicts, labels, n_token).sum() Q.append(float(loss)) if len(Q) > 200: Q.pop(0) loss_avg = sum(Q) / len(Q) optimizer.zero_grad() loss.backward() optimizer.step() LOG.log( 'Epoch %2d, Batch %6d, Loss %9.6f, Average Loss %9.6f, Time %9.6f' % (epoch_idx + 1, batch_idx + 1, loss, loss_avg, time.time() - start_time)) # Checkpoints idx = epoch_idx * trainSet.__len__() + batch_idx + 1 if (idx >= options['training']['checkingPoints']['checkMin']) and ( idx % options['training']['checkingPoints']['checkFreq'] == 0): if config.do_eval: vloss = 0 total_tokens = 0 for bid, batch_data in enumerate(validLoader): inputs, positions, token_types, labels, masks, batch_seen, batch_similar, batch_unseen, batch_source = batch_data inputs = inputs[0].cuda() positions = positions[0].cuda() token_types = token_types[0].cuda() labels = labels[0].cuda() masks = masks[0].cuda() n_token = int((labels.data != config.PAD).data.sum()) with torch.no_grad(): net.eval() predicts = net(inputs, positions, token_types, masks) vloss += float(lossFunc(predicts, labels).sum()) total_tokens += n_token vloss /= total_tokens is_best = vloss < best_vloss best_vloss = min(vloss, best_vloss) LOG.log( 'CheckPoint: Validation Loss %11.8f, Best Loss %11.8f' % (vloss, best_vloss)) if is_best: LOG.log('Best Model Updated') save_check_point( { 'epoch': epoch_idx + 1, 'batch': batch_idx + 1, 'options': options, 'config': config, 'state_dict': net.state_dict(), 'best_vloss': best_vloss }, is_best, path=config.save_path, fileName='latest.pth.tar') counter = 0 else: counter += options['training']['checkingPoints'][ 'checkFreq'] if counter >= options['training']['stopConditions'][ 'rateReduce_bound']: counter = 0 for param_group in optimizer.param_groups: lr_ = param_group['lr'] param_group['lr'] *= 0.55 _lr = param_group['lr'] LOG.log( 'Reduce Learning Rate from %11.8f to %11.8f' % (lr_, _lr)) LOG.log('Current Counter = %d' % (counter)) else: save_check_point( { 'epoch': epoch_idx + 1, 'batch': batch_idx + 1, 'options': options, 'config': config, 'state_dict': net.state_dict(), 'best_vloss': 1e99 }, False, path=config.save_path, fileName='checkpoint_Epoch' + str(epoch_idx + 1) + '_Batch' + str(batch_idx + 1) + '.pth.tar') LOG.log('CheckPoint Saved!') if options['training']['checkingPoints']['everyEpoch']: save_check_point( { 'epoch': epoch_idx + 1, 'batch': batch_idx + 1, 'options': options, 'config': config, 'state_dict': net.state_dict(), 'best_vloss': 1e99 }, False, path=config.save_path, fileName='checkpoint_Epoch' + str(epoch_idx + 1) + '.pth.tar') LOG.log('Epoch Finished.') LOG.log( 'Total Seen: %d, Total Unseen: %d, Total Similar: %d, Total Source: %d.' % (total_seen, total_unseen, total_similar, total_source)) gc.collect()
def test(config): Best_Model = torch.load(config.test_model) Tokenizer = BertTokenizer.from_pretrained(config.model) f_in = open(config.inputFile, 'r') net = BertForMaskedLM.from_pretrained(config.model) # When loading from a model not trained from DataParallel #net.load_state_dict(Best_Model['state_dict']) #net.eval() if torch.cuda.is_available(): net = net.cuda(0) if config.dataParallel: net = DataParallelModel(net) # When loading from a model trained from DataParallel net.load_state_dict(Best_Model['state_dict']) net.eval() mySearcher = Searcher(net, config) f_top1 = open('summary' + config.suffix + '.txt', 'w', encoding='utf-8') f_topK = open('summary' + config.suffix + '.txt.' + str(config.answer_size), 'w', encoding='utf-8') ed = '\n------------------------\n' for idx, line in enumerate(f_in): source_ = line.strip().split() source = Tokenizer.tokenize(line.strip()) mapping = mapping_tokenize(source_, source) source = Tokenizer.convert_tokens_to_ids(source) print(idx) print(detokenize(translate(source, Tokenizer), mapping), end=ed) l_pred = mySearcher.length_Predict(source) Answers = mySearcher.search(source) baseline = sum(Answers[0][0]) if config.reranking_method == 'none': Answers = sorted(Answers, key=lambda x: sum(x[0])) elif config.reranking_method == 'length_norm': Answers = sorted(Answers, key=lambda x: length_norm(x[0])) elif config.reranking_method == 'bounded_word_reward': Answers = sorted( Answers, key=lambda x: bounded_word_reward(x[0], config.reward, l_pred)) elif config.reranking_method == 'bounded_adaptive_reward': Answers = sorted( Answers, key=lambda x: bounded_adaptive_reward(x[0], x[2], l_pred)) texts = [ detokenize(translate(Answers[k][1], Tokenizer), mapping) for k in range(len(Answers)) ] if baseline != sum(Answers[0][0]): print('Reranked!') print(texts[0], end=ed) print(texts[0], file=f_top1) print(len(texts), file=f_topK) for i in range(len(texts)): print(Answers[i][0], file=f_topK) print(texts[i], file=f_topK) f_top1.close() f_topK.close()
class Trainer: """ trainer class """ def __init__(self, cfg: Namespace, data: Dataset): """ Args: cfg: configuration data: train dataset """ self.cfg = cfg self.train, self.valid = data.split(0.8) RATING_FIELD.build_vocab(self.train) self.device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') # pylint: disable=no-member self.batch_size = cfg.batch_size if torch.cuda.is_available(): self.batch_size *= torch.cuda.device_count() self.trn_itr = BucketIterator( self.train, device=self.device, batch_size=self.batch_size, shuffle=True, train=True, sort_within_batch=True, sort_key=lambda exam: -len(exam.comment_text)) self.vld_itr = BucketIterator( self.valid, device=self.device, batch_size=self.batch_size, shuffle=False, train=False, sort_within_batch=True, sort_key=lambda exam: -len(exam.comment_text)) self.log_step = 1000 if len(self.vld_itr) < 100: self.log_step = 10 elif len(self.vld_itr) < 1000: self.log_step = 100 bert_path = cfg.bert_path if cfg.bert_path else 'bert-base-cased' self.model = BertForSequenceClassification.from_pretrained( bert_path, num_labels=2) pos_weight = ( len([exam for exam in self.train.examples if exam.target < 0.5]) / len([exam for exam in self.train.examples if exam.target >= 0.5])) pos_wgt_tensor = torch.tensor([1.0, pos_weight], device=self.device) # pylint: disable=not-callable self.criterion = nn.CrossEntropyLoss(weight=pos_wgt_tensor) if torch.cuda.is_available(): self.model = DataParallelModel(self.model.cuda()) self.criterion = DataParallelCriterion(self.criterion) self.optimizer = optim.Adam(self.model.parameters(), cfg.learning_rate) def run(self): """ do train """ max_f_score = -9e10 max_epoch = -1 for epoch in range(self.cfg.epoch): train_loss = self._train_epoch(epoch) metrics = self._evaluate(epoch) max_f_score_str = f' < {max_f_score:.2f}' if metrics['f_score'] > max_f_score: max_f_score_str = ' is max' max_f_score = metrics['f_score'] max_epoch = epoch torch.save(self.model.state_dict(), self.cfg.model_path) logging.info('EPOCH[%d]: train loss: %.6f, valid loss: %.6f, acc: %.2f,' \ ' F: %.2f%s', epoch, train_loss, metrics['loss'], metrics['accuracy'], metrics['f_score'], max_f_score_str) if (epoch - max_epoch) >= self.cfg.patience: logging.info('early stopping...') break logging.info('epoch: %d, f-score: %.2f', max_epoch, max_f_score) def _train_epoch(self, epoch: int) -> float: """ train single epoch Args: epoch: epoch number Returns: average loss """ self.model.train() progress = tqdm(self.trn_itr, f'EPOCH[{epoch}]', mininterval=1, ncols=100) losses = [] for step, batch in enumerate(progress, start=1): outputs = self.model(batch.comment_text) # output of model wrapped with DataParallelModel is a list of outputs from each GPU # make input of DataParallelCriterion as a list of tuples if isinstance(self.model, DataParallelModel): loss = self.criterion([(output, ) for output in outputs], batch.target) else: loss = self.criterion(outputs, batch.target) losses.append(loss.item()) if step % self.log_step == 0: avg_loss = sum(losses) / len(losses) progress.set_description(f'EPOCH[{epoch}] ({avg_loss:.6f})') loss.backward() self.optimizer.step() self.optimizer.zero_grad() return sum(losses) / len(losses) def _evaluate(self, epoch: int) -> Dict[str, float]: """ evaluate on validation data Args: epoch: epoch number Returns: metrics """ self.model.eval() progress = tqdm(self.vld_itr, f' EVAL[{epoch}]', mininterval=1, ncols=100) losses = [] preds = [] golds = [] for step, batch in enumerate(progress, start=1): with torch.no_grad(): outputs = self.model(batch.comment_text) if isinstance(self.model, DataParallelModel): loss = self.criterion([(output, ) for output in outputs], batch.target) for output in outputs: preds.extend([(0 if o[0] < o[1] else 1) for o in output]) else: loss = self.criterion(outputs, batch.target) preds.extend([(0 if output[0] < output[1] else 1) for output in outputs]) losses.append(loss.item()) golds.extend([gold.item() for gold in batch.target]) if step % self.log_step == 0: avg_loss = sum(losses) / len(losses) progress.set_description( f' EVAL[{epoch}] ({avg_loss:.6f})') metrics = self._get_metrics(preds, golds) metrics['loss'] = sum(losses) / len(losses) return metrics @classmethod def _get_metrics(cls, preds: List[float], golds: List[float]) -> Dict[str, float]: """ get metric values Args: preds: predictions golds: gold standards Returns: metric """ assert len(preds) == len(golds) true_pos = 0 false_pos = 0 false_neg = 0 true_neg = 0 for pred, gold in zip(preds, golds): if pred >= 0.5: if gold >= 0.5: true_pos += 1 else: false_pos += 1 else: if gold >= 0.5: false_neg += 1 else: true_neg += 1 accuracy = (true_pos + true_neg) / (true_pos + false_pos + false_neg + true_neg) precision = 0.0 if (true_pos + false_pos) > 0: precision = true_pos / (true_pos + false_pos) recall = 0.0 if (true_pos + false_neg) > 0: recall = true_pos / (true_pos + false_neg) f_score = 0.0 if (precision + recall) > 0.0: f_score = 2.0 * precision * recall / (precision + recall) return { 'accuracy': 100.0 * accuracy, 'precision': 100.0 * precision, 'recall': 100.0 * recall, 'f_score': 100.0 * f_score, }