def test_1(self): vtraj = self.vtrajs[2] assert len(vtraj) == 3 assignments = 1234 * np.ones(len(vtraj)) distances = np.random.randn(len(vtraj)).astype(np.float32) save(self.fa, self.fd, assignments, distances, vtraj) AData = -1 * np.ones((2, 10)) AData[0, 6:9] = 1234 DData = -1 * np.ones((2, 10), dtype=np.float32) DData[0, 6:9] = distances npt.assert_equal(self.fa.root.arr_0, AData) npt.assert_equal(self.fd.root.arr_0, DData)
def test_1(self): vtraj = self.vtrajs[2] assert len(vtraj) == 3 assignments = 1234 * np.ones(len(vtraj)) distances = np.random.randn(len(vtraj)).astype(np.float32) save(self.fa, self.fd, assignments, distances, vtraj) AData = -1 * np.ones((2,10)) AData[0,6:9] = 1234 DData = -1 * np.ones((2,10), dtype=np.float32) DData[0,6:9] = distances npt.assert_equal(self.fa.root.Data, AData) npt.assert_equal(self.fd.root.Data, DData)
def main(args, metric, logger): project = Project.load_from_hdf(args.project) if not os.path.exists(args.generators): raise IOError('Could not open generators') generators = os.path.abspath(args.generators) output_dir = os.path.abspath(args.output_dir) # connect to the workers try: json_file = client_json_file(args.profile, args.cluster_id) client = parallel.Client(json_file, timeout=2) except parallel.error.TimeoutError as exception: msg = '\nparallel.error.TimeoutError: ' + str(exception) msg += "\n\nPerhaps you didn't start a controller?\n" msg += "(hint, use ipcluster start)" print >> sys.stderr, msg sys.exit(1) lview = client.load_balanced_view() # partition the frames into a bunch of vtrajs all_vtrajs = local.partition(project, args.chunk_size) # initialze the containers to save to disk f_assignments, f_distances = local.setup_containers( output_dir, project, all_vtrajs) # get the chunks that have not been computed yet valid_indices = np.where( f_assignments.root.completed_vtrajs[:] == False)[0] remaining_vtrajs = np.array(all_vtrajs)[valid_indices].tolist() logger.info('%d/%d jobs remaining', len(remaining_vtrajs), len(all_vtrajs)) # send the workers the files they need to get started # dview.apply_sync(remote.load_gens, generators, project['ConfFilename'], # metric) # get the workers going n_jobs = len(remaining_vtrajs) amr = lview.map(remote.assign, remaining_vtrajs, [generators] * n_jobs, [metric] * n_jobs, chunksize=1) pending = set(amr.msg_ids) while pending: client.wait(pending, 1e-3) # finished is the set of msg_ids that are complete finished = pending.difference(client.outstanding) # update pending to exclude those that just finished pending = pending.difference(finished) for msg_id in finished: # we know these are done, so don't worry about blocking async = client.get_result(msg_id) assignments, distances, chunk = async .result[0] vtraj_id = local.save(f_assignments, f_distances, assignments, distances, chunk) log_status(logger, len(pending), n_jobs, vtraj_id, async) f_assignments.close() f_distances.close() logger.info('All done, exiting.')
def main(args, metric, logger): project = Project.load_from(args.project) if not os.path.exists(args.generators): raise IOError("Could not open generators") generators = os.path.abspath(args.generators) output_dir = os.path.abspath(args.output_dir) # connect to the workers try: json_file = client_json_file(args.profile, args.cluster_id) client = parallel.Client(json_file, timeout=2) except parallel.error.TimeoutError as exception: msg = "\nparallel.error.TimeoutError: " + str(exception) msg += "\n\nPerhaps you didn't start a controller?\n" msg += "(hint, use ipcluster start)" print >> sys.stderr, msg sys.exit(1) lview = client.load_balanced_view() # partition the frames into a bunch of vtrajs all_vtrajs = local.partition(project, args.chunk_size) # initialze the containers to save to disk f_assignments, f_distances = local.setup_containers(output_dir, project, all_vtrajs) # get the chunks that have not been computed yet valid_indices = np.where(f_assignments.root.completed_vtrajs[:] == False)[0] remaining_vtrajs = np.array(all_vtrajs)[valid_indices].tolist() logger.info("%d/%d jobs remaining", len(remaining_vtrajs), len(all_vtrajs)) # send the workers the files they need to get started # dview.apply_sync(remote.load_gens, generators, project['ConfFilename'], # metric) # get the workers going n_jobs = len(remaining_vtrajs) amr = lview.map(remote.assign, remaining_vtrajs, [generators] * n_jobs, [metric] * n_jobs, chunksize=1) pending = set(amr.msg_ids) while pending: client.wait(pending, 1e-3) # finished is the set of msg_ids that are complete finished = pending.difference(client.outstanding) # update pending to exclude those that just finished pending = pending.difference(finished) for msg_id in finished: # we know these are done, so don't worry about blocking async = client.get_result(msg_id) try: assignments, distances, chunk = async.result[0] except RemoteError as e: print "Remote Error:" e.print_traceback() raise vtraj_id = local.save(f_assignments, f_distances, assignments, distances, chunk) log_status(logger, len(pending), n_jobs, vtraj_id, async) f_assignments.close() f_distances.close() logger.info("All done, exiting.")