Example #1
0
def pkg_dtw(file_name, line_num, df):
    file_name = 'data/' + file_name
    y_list = load_data(file_name, line_num)
    query, reference = cal_warped_signals(y_list)

    # plot warped signal
    # downsample times
    xvals, yinterp = get_warped_signals(query, cf.ds_time)

    # calculate the corresponding point pair
    query.drop(['shift', 't'], axis=1)
    query2 = pd.DataFrame({'t': xvals, 'q': yinterp})
    query2['close_index'] = 0
    true_align_dict = get_true_aligned(cf.ds_time, query, query2)
    group_num_dict = get_group_number(true_align_dict, query)

    d, cost_matrix, acc_cost_matrix, path = dtw(reference[['t', 'q']].values,
                                                query2[['t', 'q']].values,
                                                dist=norm)
    fact_align_dict = get_fact_align(path)
    reverse_dict = get_reverse_dict(path)
    error_rate = get_k_accuracy(true_align_dict, fact_align_dict,
                                group_num_dict)
    SS1 = get_SS1(fact_align_dict, cf.ds_time)
    SS2 = get_SS2(fact_align_dict, reverse_dict, cf.ds_time)
    df.loc[line_num] = [error_rate, SS1, SS2]
    return df
Example #2
0
def event_dtw(file_name, line_num, df):
    file_name = 'data/' + file_name
    y_list = load_data(file_name, line_num)
    query, reference = cal_warped_signals(y_list)

    reference['upslope'] = 0
    reference['downslope'] = 0

    # plot warped signal
    # downsample times
    xvals, yinterp = get_warped_signals(query, cf.ds_time)

    # calculate the corresponding point pair
    query.drop('shift', axis=1)
    query.drop('t', axis=1)
    query2 = pd.DataFrame({'t': xvals, 'q': yinterp})
    query2['close_index'] = 0
    query2['upslope'] = 0
    query2['downslope'] = 0
    true_align_dict = get_true_aligned(cf.ds_time, query, query2)
    group_num_dict = get_group_number(true_align_dict, query)

    raw_reference_uslope, reference_upslope = get_upslope_endings(
        reference['q'], cf.refer_percent)
    raw_query_uslope, query_upslope = get_upslope_endings(
        query2['q'], cf.query_percent)

    raw_reference_downlope, reference_downslope = get_downslope_endings(
        reference['q'], cf.refer_percent)
    raw_query_downlope, query_downslope = get_downslope_endings(
        query2['q'], cf.query_percent)

    rising_edge_grps = edge_matching(reference, query2, reference_upslope,
                                     query_upslope)
    down_edge_grps = edge_matching(reference, query2, reference_downslope,
                                   query_downslope)

    calculate_event(rising_edge_grps, reference, query2, True)
    calculate_event(down_edge_grps, reference, query2, False)
    d, cost_matrix, acc_cost_matrix, path = dtw(
        reference[['t', 'q', 'upslope', 'downslope']].values,
        query2[['t', 'q', 'upslope', 'downslope']].values,
        dist=norm)
    fact_align_dict = get_fact_align(path)
    reverse_dict = get_reverse_dict(path)
    error_rate = get_k_accuracy(true_align_dict, fact_align_dict,
                                group_num_dict)
    SS1 = get_SS1(fact_align_dict, cf.ds_time)
    SS2 = get_SS2(fact_align_dict, reverse_dict, cf.ds_time)
    df.loc[line_num] = [error_rate, SS1, SS2]
    return df
def pkg_shapedtw(file_name, line_num, df):
    file_name = 'data/' + file_name
    y_list = load_data(file_name, line_num)
    query, reference = cal_warped_signals(y_list)

    # plot warped signal
    xvals, yinterp = get_warped_signals(query, cf.ds_time)

    # normalize the signal
    reference_norm = stats.zscore(reference['q'])
    yinterp_norm = stats.zscore(yinterp)

    # store the corresponding point pair
    query.drop(['shift', 't'], axis=1)
    query2 = pd.DataFrame({'t': xvals, 'q': yinterp})
    query2['close_index'] = 0
    true_align_dict = get_true_aligned(cf.ds_time, query, query2)
    group_num_dict = get_group_number(true_align_dict, query)

    refer_subsequences = samplingSequences(reference_norm, sub_len)
    query_subsequences = samplingSequences(yinterp_norm, int(sub_len / cf.ds_time))
    refer_descriptors = np.zeros((len(refer_subsequences), nBlocks * 8))
    query_descriptors = np.zeros((len(query_subsequences), nBlocks * 8))
    refer_nsubsequences = len(refer_subsequences)
    query_nsubsequences = len(query_subsequences)

    for i in range(refer_nsubsequences):
        sub_seq = refer_subsequences[i]
        refer_descriptors[i] = cal_descriptor(sub_seq, sub_len)

    for i in range(query_nsubsequences):
        sub_seq = query_subsequences[i]
        query_descriptors[i] = cal_descriptor(sub_seq, int(sub_len / cf.ds_time))

    d, cost_matrix, acc_cost_matrix, path = dtw(refer_descriptors, query_descriptors, dist=norm)
    fact_align_dict = get_fact_align(path)
    reverse_dict = get_reverse_dict(path)
    error_rate = get_k_accuracy(true_align_dict, fact_align_dict, group_num_dict)
    SS1 = get_SS1(fact_align_dict, cf.ds_time)
    SS2 = get_SS2(fact_align_dict, reverse_dict, cf.ds_time)
    df.loc[line_num] = [error_rate, SS1, SS2]
    return df
Example #4
0
if sub_len % 2 == 0:
    raise Exception("Sub_len must be odd number!")

refer_subsequences = samplingSequences(reference_norm, sub_len)
query_subsequences = samplingSequences(yinterp_norm, int(sub_len / cf.ds_time))
refer_descriptors = np.zeros((len(refer_subsequences), nBlocks * 8))
query_descriptors = np.zeros((len(query_subsequences), nBlocks * 8))
refer_nsubsequences = len(refer_subsequences)
query_nsubsequences = len(query_subsequences)

for i in range(refer_nsubsequences):
    sub_seq = refer_subsequences[i]
    refer_descriptors[i] = cal_descriptor(sub_seq, sub_len)

for i in range(query_nsubsequences):
    sub_seq = query_subsequences[i]
    query_descriptors[i] = cal_descriptor(sub_seq, int(sub_len / cf.ds_time))

d, cost_matrix, acc_cost_matrix, path = dtw(refer_descriptors,
                                            query_descriptors,
                                            dist=norm)
query2.columns = ['t2', 'q', 'close_index']  # adapt to the get_link_graph
get_link_graph(reference, query2, path, -3, 'downsampled shapedtw')
fact_align_dict = get_fact_align(path)
reverse_dict = get_reverse_dict(path)
print("error rate of shapedtw is " +
      str(get_k_accuracy(true_align_dict, fact_align_dict, group_num_dict)))
print("SS1 of shapedtw is " + str(get_SS1(path, cf.ds_time)))
print("SS2 of shapedtw is " +
      str(get_SS2(fact_align_dict, reverse_dict, ds_time)))
Example #5
0
y_list = load_data(debug_file, debug_line)
y_list = y_list[:-(len(y_list) % cf.ds_time)]
query, reference = cal_warped_signals(y_list, 'right')

# plot warped signal
# downsample times
xvals, yinterp = plot_warped_signals(reference, query, cf.ds_time)
query2 = pd.DataFrame({'t': xvals, 'q': yinterp})

# calculate the corresponding point pair
query.drop(['shift', 't'], axis=1)
query2['close_index'] = 0
true_align_dict = get_true_aligned(cf.ds_time, query, query2)
group_num_dict = get_group_number(true_align_dict, query)

reference_slope_col(reference, cf.ds_time)
slope_col(query2)
d, cost_matrix, acc_cost_matrix, path = dtw(reference[['t',
                                                       'avg_slope']].values,
                                            query2[['t', 'slope']].values,
                                            dist=norm)
get_link_graph(reference, query2, path, -3, 'Downsampled signal with dDTW',
               '(b) dDTW')
fact_align_dict = get_fact_align(path)
reverse_dict = get_reverse_dict(path)
print("path = " + str(len(path[0])))
print('group = ' +
      str(get_k_accuracy(true_align_dict, fact_align_dict, group_num_dict)))
print("SS1 of ddtw is " + str(get_SS1(fact_align_dict, cf.ds_time)))
print("SS2 of ddtw is " +
      str(get_SS2(fact_align_dict, reverse_dict, cf.ds_time)))