from framework.module import NamedModule from framework.nn.ops.pairwise import L2Norm2 from loss.losses import Samples_Loss from modules.image2measure import ResImageToMeasure from modules.linear_ot import LinearTransformOT, LinearTransformOT_bk from modules.measure2image import MeasureToImage, ResMeasureToImage, Measure2imgTmp import os import cv2 from parameters.dataset import DatasetParameters from parameters.deformation import DeformationParameters from parameters.gan import GanParameters parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=[DatasetParameters(), GanParameters(), DeformationParameters()]) args = parser.parse_args() for k in vars(args): print(f"{k}: {vars(args)[k]}") device = torch.device("cuda:3" if torch.cuda.is_available() else "cpu") torch.cuda.set_device(device) dataset_test = SegmentationDataset( "/home/nazar/PycharmProjects/mrt", transform=albumentations.Compose([ albumentations.Resize(args.image_size, args.image_size), albumentations.CenterCrop(args.image_size, args.image_size), ToTensorV2()
parser.add_argument('--r1', type=float, default=10) parser.add_argument('--path_regularize', type=float, default=2) parser.add_argument('--path_batch_shrink', type=int, default=2) parser.add_argument('--d_reg_every', type=int, default=16) parser.add_argument('--g_reg_every', type=int, default=4) parser.add_argument('--mixing', type=float, default=0.9) parser.add_argument('--ckpt', type=str, default=None) parser.add_argument('--lr', type=float, default=0.002) parser.add_argument('--channel_multiplier', type=int, default=1) parser.add_argument('--wandb', action='store_true') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() parser = argparse.ArgumentParser( parents=[ DatasetParameters(), GanParameters(), DeformationParameters(), MunitParameters() ], # formatter_class=argparse.ArgumentDefaultsHelpFormatter ) munit_args = parser.parse_args() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) torch.cuda.set_device(device) cont_style_encoder: MunitEncoder = cont_style_munit_enc( munit_args, None, # "/home/ibespalov/pomoika/munit_content_encoder15.pt",
from dataset.toheatmap import ToGaussHeatMap from dataset.probmeasure import UniformMeasure2D01 import pandas as pd import networkx as nx import ot from barycenters.sampler import Uniform2DBarycenterSampler, Uniform2DAverageSampler from parameters.path import Paths from joblib import Parallel, delayed N = 100 D = np.load(f"{Paths.default.models()}/hum36_graph{N}.npy") padding = 32 prob = np.ones(padding) / padding NS = 13410 parser = DatasetParameters() args = parser.parse_args() for k in vars(args): print(f"{k}: {vars(args)[k]}") "0" data = SimpleHuman36mDataset() data.initialize(args.data_path) def LS(k): return data[k]["paired_B"].numpy() ls = np.asarray([LS(k) for k in range(0, N, 1)]) # ls2 = np.asarray([LS(k) for k in range(NN, 2 * NN)])