Example #1
0
def partNum(z, pxlen, R_mu, R_sigma):
    A = (np.shape(z)[1]-1)*(np.shape(z)[0]-1) * pxlen**2
    V = par.V(z, pxlen)
    
    V_mean = 4/3 * np.pi * np.exp(3*R_mu + 3**2*R_sigma**2/2)
    
    N_particles = V / V_mean
    eff_cov = N_particles / A
    
    return N_particles, eff_cov
Example #2
0
def partNum(z, pxlen, R_mu, R_sigma):
    A = len(z)**2 * pxlen**2
    V = par.V(z, pxlen)

    V_mean = 4 / 3 * np.pi * np.exp(3 * R_mu + 3**2 * R_sigma**2 / 2)

    N_part = V / V_mean
    eff_cov = N_part / A

    return N_part, eff_cov
Example #3
0
def plotVfracDep(Npx, pxlen, N_part_max, N_part_step, R_mean, R_std, R_mu,
                 R_sigma):
    z = mf.genFlat(Npx)
    V_real = 0
    V_frac_list = []
    N_part = np.arange(0, N_part_max + 1, N_part_step)
    for N in N_part:
        z, R_part_real = mf.genLogNormSolidSph(z, pxlen, N_part_step, R_mean,
                                               R_std)
        V_real += np.sum(4 / 3 * np.pi * R_part_real**3)
        V_frac_list.append(par.V(z, pxlen) / V_real)
        print(N)

    plt.figure()
    plt.plot(N_part, V_frac_list, color='r', marker='o')
    plt.xlabel(r'$N_{part,real}$')
    plt.ylabel(r'$V_{tot,est} / V_{tot,real}$')
    plt.title(r'$\mu_R = $' + str(R_mu) + r'$nm, \sigma_R = $' + str(R_sigma) +
              r'$nm$' + r'$, R_{mean} = $' + str(R_mean) +
              r'$nm, R_{std} = $' + str(R_std) + r'$nm$')
    plt.grid()
Example #4
0
def partDep(Npx, pxlen, step_sim, N_part_min, N_part_max, N_part_step, R_mu, R_sigma, firstmap='', usefile=False, savefile=False):
    N_part = np.linspace(np.log10(N_part_min), np.log10(N_part_max), N_part_step)
    N_part = np.round(10**N_part)
    N_part.astype(int, copy=False)
    
#    N_est = np.array([]) #2+1D only
    V_est = np.array([])
    rms_est = np.array([])
    h_est = np.array([])
    h_top = np.array([])
    
    C_true=[]
    G_true=[]
    C2_true=[]
    G2_true=[]
    C_list=[]
    G_list=[]

    for i in range(step_sim):
        if firstmap=='': #initialize map
            #z = np.zeros(Npx) #1+1D
            z=mf.genFlat(Npx)
            N_prec=0
            V_real=0
        else:
            z = np.loadtxt(firstmap)
            dotpos=firstmap.find('.')
            start=dotpos-1
            for i in range(dotpos-1):
                if firstmap[start]=='_': break
                start-=1
            N_prec=int(firstmap[start+1:dotpos])
            
            out=open(firstmap)
            head=out.readline()
            out.close()
            start=head.find('V=')+2
            V_real=float(head[start:head.find(';', start)])

        for N in N_part:
            print('Sim.',i+1,'; N=',str(N)[:len(str(N))-2], end=' ')
            if usefile and isfile('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat'):
                print('map from file ...', end=' ')
                z= np.loadtxt('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat')
                out=open('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat')
                head=out.readline()
                out.close()
                start=head.find('V=')+2
                V_real=float(head[start:head.find(';', start)])
            else:
                #print('generating map ...', end=' ')
                #z, R_part_real = mf.genLogNormSolidSph(z,pxlen,int(N-N_prec),R_mu,R_sigma)
                #z=mf.genLattice1d(z,pxlen,int(N-N_prec)) #1+1D
                #V_real += (N-N_prec)* pxlen**2 #1+1D
                z=mf.genLattice2d(z,pxlen,int(N-N_prec))
                V_real += (N-N_prec)* pxlen**3
                #V_real += 4/3*np.pi * np.sum(R_part_real**3)
                if savefile: np.savetxt('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat', z, header='V='+str(V_real)+'; Npx,pxlen,Npart in filename')
                #if savefile: np.savetxt('matrice.mat', z)
            N_prec=N
            
            #print('computing parameters ...')
            #N_est=np.append(N_est, partNum(z,pxlen,R_mu,R_sigma)[0]/N)
            V_est=np.append(V_est, par.V(z,pxlen)/V_real)
            rms_est=np.append(rms_est, np.std(z))
            h_est=np.append(h_est, np.mean(z))
            h_top=np.append(h_top, np.amax(z))
            
            #print('computing correlations ...')
            l,C=par.C_profile(z, pxlen, 1)
            C_list.append(C)
            #C_list.append(par.C_1d(z)) #1+1D
            
            l,C=par.G_profile(z, pxlen, 1)
            G_list.append(C)
            #G_list.append(par.G_1d(z)) #1+1D
            print('',end='\r')
            #print()
        
        if i==0: 
            for el in C_list:
                C_true.append(el)
                C2_true.append(el**2)
            for el in G_list:
                G_true.append(el)
                G2_true.append(el**2)
        else:
            for i in range(len(C_true)):
                C_true[i]=C_true[i]+C_list[i]
                C2_true[i]=C2_true[i]+C_list[i]**2
            for i in range(len(G_true)):
                G_true[i]=G_true[i]+G_list[i]
                G2_true[i]=G2_true[i]+G_list[i]**2
        C_list.clear()
        G_list.clear()

    

    filename=['V_relVsN.dat', 'rmsVsN.dat', 'hVsN.dat', 'maxhVsN.dat']
    est=[V_est, rms_est, h_est, h_top]
    
    for j in range(len(est)):
        err=np.array([])
        for i in range(len(N_part)):
            if step_sim==1: err=np.append(err, 0)
            else: err=np.append(err, np.std(est[j][i::len(N_part)]))
            est[j][i]=np.mean(est[j][i::len(N_part)])

    
        np.savetxt(filename[j], np.array([ est[j][:len(N_part)], N_part, err ]),
                   header=str(Npx) + ' ' + str(pxlen) + '\n' +
                   r'$N_{px}$ $L_{px}$')
                   #header=str(R_mu) + ' ' + str(R_sigma) + ' ' + str(Npx) + ' ' + str(pxlen) + '\n' +
                   #r'$\mu_R$ $\sigma_R$ $N_{px}$ $L_{px}$')
        print('data saved in '+ filename[j] +' and in folder maps/')
    
    C_true=np.array(C_true)/step_sim
    G_true=np.array(G_true)/step_sim
    C2_true=np.array(C2_true)/step_sim - C_true**2
    G2_true=np.array(G2_true)/step_sim - G_true**2
#    np.savetxt('x.dat', l)
    np.savetxt('C.dat', C_true)
    np.savetxt('G.dat', G_true)
    np.savetxt('C2.dat', C2_true)
    np.savetxt('G2.dat', G2_true)
    print('correlations saved in files C,G,C2,G2')
Example #5
0
def partDep_mpi(Npx, pxlen, step_sim, N_part_min, N_part_max, N_part_step, R_mu, R_sigma, firstmap='', usefile=False, savefile=False):
    N_part = np.linspace(np.log10(N_part_min), np.log10(N_part_max), N_part_step)
    N_part = np.round(10**N_part)
    N_part.astype(int, copy=False)
    
    N_est = np.array([])
    V_est = np.array([])
    rms_est = np.array([])
    h_est = np.array([])
    h_top = np.array([])
    
#    L_corr_est = np.array([])
#    L_corr_err = np.array([])
#    alfa_est=np.array([])
#    alfa_err=np.array([])
    
    C_true=[]
    G_true=[]
    C2_true=[]
    G2_true=[]
    C_list=[]
    G_list=[]
    comm=MPI.COMM_WORLD
    size_mpi=comm.Get_size()
    for i in range(step_sim/size_mpi):
        if firstmap=='': #initialize map
            z = mf.genFlat(Npx)
            N_prec=0
            V_real=0
        else:
            z = np.loadtxt(firstmap)
            dotpos=firstmap.find('.')
            start=dotpos-1
            for i in range(dotpos-1):
                if firstmap[start]=='_': break
                start-=1
            N_prec=int(firstmap[start+1:dotpos])
            
            out=open(firstmap)
            head=out.readline()
            out.close()
            start=head.find('V=')+2
            V_real=float(head[start:head.find(';', start)])

        for N in N_part:
            print('Sim.',i+1,'; N=',str(N)[:len(str(N))-2], end=' ')
            if usefile and isfile('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat'):
                print('map from file ...', end=' ')
                z= np.loadtxt('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat')
                out=open('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat')
                head=out.readline()
                out.close()
                start=head.find('V=')+2
                V_real=float(head[start:head.find(';', start)])
            else:
                print('generating map ...', end=' ')
                z, R_part_real = mf.genLogNormSolidSph(z,pxlen,int(N-N_prec),R_mu,R_sigma)
                mf.plotfalsecol(z,pxlen)
                V_real += np.sum(4/3 * np.pi * R_part_real**3)
                if savefile: np.savetxt('maps/lognorm_'+str(Npx)+'_'+str(pxlen)+'_'+str(N)[:len(str(N))-2]+'.dat', z, header='V='+str(V_real)+'; Npx,pxlen,Npart in filename')
            N_prec=N
            
            print('computing parameters ...')
            N_est=np.append(N_est, partNum(z,pxlen,R_mu,R_sigma)[0]/N)
            V_est=np.append(V_est, par.V(z,pxlen)/V_real)
            rms_est=np.append(rms_est, np.std(z))
            h_est=np.append(h_est, np.mean(z))
            h_top=np.append(h_top, np.amax(z))
            
            #print('computing correlations ...')
            l,C=par.C_profile(z, 2, 800)           
            C_list.append(C)
       
            l,C=par.G_profile(z, 2, 800)
            G_list.append(C)
            
        if i==0: 
            for el in C_list:
                C_true.append(el)
                C2_true.append(el**2)
            for el in G_list:
                G_true.append(el)
                G2_true.append(el**2)
        else:
            for i in range(len(C_true)):
                C_true[i]=C_true[i]+C_list[i]
                C2_true[i]=C2_true[i]+C_list[i]**2
            for i in range(len(G_true)):
                G_true[i]=G_true[i]+G_list[i]
                G2_true[i]=G2_true[i]+G_list[i]**2
        C_list.clear()
        G_list.clear()

    est=[N_est, V_est, rms_est, h_est, h_top]
    rank=comm.Get_rank()
    if rank!=0: comm.Send(est, dest=0)
    if rank==0:
        rec=[]
        for i in range(1, size_mpi):
            comm.Recv(rec, source=i)
            for k in range(len(est)):
                est[k]=np.append(est[k], rec[k])
            rec.clear()
      
    C_true=np.array(C_true)/(step_sim/size_mpi)
    G_true=np.array(G_true)/(step_sim/size_mpi)
    C2_true=np.array(C2_true)/(step_sim/size_mpi) - C_true**2
    G2_true=np.array(G2_true)/(step_sim/size_mpi) - G_true**2
    corr=[C_true, G_true, C2_true, G2_true]
    
    if rank!=0: comm.Send(corr, dest=0)
    if rank==0:
        for i in range(1, size_mpi):
            comm.Recv(rec, source=i)
            for k in range(4):
                corr[k]=np.append(corr[k], rec[k])
            rec.clear()
        corr[0]=np.array(corr[0])/size_mpi
        corr[1]=np.array(corr[1])/size_mpi
        corr[2]=np.array(corr[2])/size_mpi - corr[0]**2
        corr[3]=np.array(corr[3])/size_mpi - corr[1]**2
                
        filename=['N_relVsN.dat', 'V_relVsN.dat', 'rmsVsN.dat', 'hVsN.dat', 'maxhVsN.dat']
        
        for j in range(len(est)):
            err=np.array([])
            for i in range(len(N_part)):
                if step_sim==1: err=np.append(err, 0)
                else: err=np.append(err, np.std(est[j][i::len(N_part)]))
                est[j][i]=np.mean(est[j][i::len(N_part)])
    
        
            np.savetxt(filename[j], np.array([ est[j][:len(N_part)], N_part, err ]),
                       header=str(R_mu) + ' ' + str(R_sigma) + ' ' + str(Npx) + ' ' + str(pxlen) + '\n' +
                       r'$\mu _R$ $\sigma _R$ $N_{px}$ $L_{px}$')
            print('data saved in '+ filename[j] +' and in folder maps/')
        
        np.savetxt('correlations.dat', np.array([ l*pxlen, corr[0], corr[1], corr[2], corr[3]]), fmt='%s')
Example #6
0
pxlen=L/Npx
thres=0 #soglia
#-----------------------------------------------
R=q*L
htip=2*R*1.02
R_tip=np.linspace(R/5,3*R, 8)

V_red_dil = []
height = []
profiles = []
posmax = []

z=mf.genFlat(int(Npx[-1]))
z=mf.genSphere(z,pxlen[-1],np.array([L/2, L/2]),np.array([R]))
obj = mf.identObj(z,thres)[0]
V_red_calc= par.V(obj, pxlen[-1]) / volsphere(R)

maxh=0
posmax.append(0)
for x in range(np.shape(obj)[0]):
    height.append(np.amax(obj[0:,x])/R)
    if maxh<height[-1]:
        maxh=height[-1]
        posmax[-1]=x
profiles.append(np.array(height))
height.clear()

for rtip in R_tip:
    for i in range(len(Npx)): #iterazione su risoluzione
        print('R_tip=', rtip , ' Npx=', int(Npx[i]))
        z=mf.genFlat(int(Npx[i]))
Example #7
0
def partDep(Npx,
            pxlen,
            step_sim,
            N_part_min,
            N_part_max,
            N_part_step,
            R_mean,
            R_std,
            par,
            firstmap='',
            usefile=False,
            savefile=False):
    N_part = np.linspace(np.log10(N_part_min), np.log10(N_part_max),
                         N_part_step)
    N_part = np.round(10**N_part)
    N_part.astype(int, copy=False)

    R_mu = np.log(R_mean /
                  np.sqrt(1 + R_std**2 / R_mean**2))  # recalculated gaussian
    R_sigma = np.sqrt(np.log(1 +
                             (R_std / R_mean)**2))  # reculaculated gaussian

    est_list = []
    wl_list = []
    for i in range(step_sim):
        if firstmap == '':  #initialize map
            z = mf.genFlat(Npx)
            N_prec = 0
            V_real = 0
        else:
            z = np.loadtxt(firstmap)
            dotpos = firstmap.find('.')
            start = dotpos - 1
            for i in range(dotpos - 1):
                if firstmap[start] == '_': break
                start -= 1
            N_prec = int(firstmap[start + 1:dotpos])

            out = open(firstmap)
            head = out.readline()
            out.close()
            start = head.find('V=') + 2
            V_real = float(head[start:head.find(';', start)])

        for N in N_part:
            print('Sim.', i + 1, 'N=', str(N)[:len(str(N)) - 2], end=' ')
            if usefile and isfile('maps/lognorm_' + str(Npx) + '_' +
                                  str(pxlen) + '_' + str(N)[:len(str(N)) - 2] +
                                  '.dat'):
                print('map from file ...')
                z = np.loadtxt('maps/lognorm_' + str(Npx) + '_' + str(pxlen) +
                               '_' + str(N)[:len(str(N)) - 2] + '.dat')
                out = open('maps/lognorm_' + str(Npx) + '_' + str(pxlen) +
                           '_' + str(N)[:len(str(N)) - 2] + '.dat')
                head = out.readline()
                out.close()
                start = head.find('V=') + 2
                V_real = float(head[start:head.find(';', start)])
            else:
                print('generating map ...')
                z, R_part_real = mf.genLogNormSolidSph(z, pxlen,
                                                       int(N - N_prec), R_mean,
                                                       R_std)
                V_real += np.sum(4 / 3 * np.pi * R_part_real**3)
                if savefile:
                    np.savetxt('maps/lognorm_' + str(Npx) + '_' + str(pxlen) +
                               '_' + str(N)[:len(str(N)) - 2] + '.dat',
                               z,
                               header='V=' + str(V_real) +
                               '; Npx,pxlen,Npart in filename')
            N_prec = N

            if par == 'N' or par == 'N_part' or par == 'Npart':
                est_list.append(partNum(z, pxlen, R_mu, R_sigma)[0])
            if par == 'V' or par == 'V_rel' or par == 'V_frac':
                est_list.append(par.V(z, pxlen) / V_real)
            if par == 'rms' or par == 'RMS' or par == 'std':
                est_list.append(np.std(z))
            wl_list.append(par.wavelength(z, pxlen, 'x'))

    if par == 'N' or par == 'N_part' or par == 'Npart':
        filename = 'N_relVsN_real.dat'
    if par == 'V' or par == 'V_rel' or par == 'V_frac':
        filename = 'V_relVsV_real.dat'
    if par == 'rms' or par == 'RMS' or par == 'std':
        filename = 'rmsVsN_real.dat'
    err = []
    for i in range(len(N_part)):
        if step_sim == 1: err.append(0)
        else: err.append(np.std(np.array(est_list[i::len(N_part)])))
        est_list[i] = np.mean(np.array(est_list[i::len(N_part)]))
        wl_list[i] = np.mean(np.array(wl_list[i::len(N_part)]))

    np.savetxt(filename,
               np.array(
                   [np.array(est_list[:len(N_part)]), N_part,
                    np.array(err)], np.array(wl_list[:len(N_part)])),
               header=str(R_mu) + ' ' + str(R_sigma) + ' ' + str(R_mean) +
               ' ' + str(R_std) + ' ' + str(Npx) + ' ' + str(pxlen) + '\n' +
               r'$\mu_R$ $\sigma_R$ $R_{mean}$ $R_{std}$ $N_{px}$ $L_{px}$' +
               '\n wavelength on last line')
    print('data saved in ' + filename + 'and in folder maps/')