def set_parameters(self, params): default_params = { 'sigma': 1.0, 'n_sources': 100, 'xmin': np.min(self.elec_pos[:, 0]), 'xmax': np.max(self.elec_pos[:, 0]), 'ymin': np.min(self.elec_pos[:, 1]), 'ymax': np.max(self.elec_pos[:, 1]), 'zmin': np.min(self.elec_pos[:, 2]), 'zmax': np.max(self.elec_pos[:, 2]), 'dist_table_density': 100, 'lambd': 0.0, 'R_init': 2 * parut.min_dist(self.elec_pos), 'ext_X': 0.0, 'ext_Y': 0.0, 'ext_Z': 0.0, 'h': 1.0, 'source_type': 'gauss' } for (prop, default) in default_params.iteritems(): setattr(self, prop, params.get(prop, default)) self.gdX = params.get('gdX', 0.05 * (self.xmax - self.xmin)) self.gdY = params.get('gdY', 0.05 * (self.ymax - self.ymin)) self.gdZ = params.get('gdZ', 0.05 * (self.zmax - self.zmin)) self.dist_table_density = 100 self.source_type = params.get('source_type', 'gauss') basis_types = { "step": bf.step_rescale_3D, "gauss": bf.gauss_rescale_3D, "gauss_lim": bf.gauss_rescale_lim_3D, } if self.source_type not in basis_types.keys(): raise Exception("Incorrect source type!") else: self.basis = basis_types.get(self.source_type) nx = (self.xmax - self.xmin)/self.gdX + 1 ny = (self.ymax - self.ymin)/self.gdY + 1 nz = (self.zmax - self.zmin)/self.gdZ + 1 lin_x = np.linspace(self.xmin, self.xmax, nx) lin_y = np.linspace(self.ymin, self.ymax, ny) lin_z = np.linspace(self.zmin, self.ymax, nz) self.space_X, self.space_Y, self.space_Z = np.meshgrid(lin_x, lin_y, lin_z) (self.X_src, self.Y_src, self.Z_src, self.R) = sd.make_src_3D( self.space_X, self.space_Y, self.space_Z, self.n_sources, self.ext_X, self.ext_Y, self.ext_Z, self.R_init ) Lx = np.max(self.X_src) - np.min(self.X_src) + self.R Ly = np.max(self.Y_src) - np.min(self.Y_src) + self.R Lz = np.max(self.Z_src) - np.min(self.Z_src) + self.R self.dist_max = (Lx**2 + Ly**2 + Lz**2)**0.5
def set_parameters(self, params): default_params = { 'sigma': 1.0, 'n_sources': 300, 'xmin': np.min(self.elec_pos[:, 0]), 'xmax': np.max(self.elec_pos[:, 0]), 'ymin': np.min(self.elec_pos[:, 1]), 'ymax': np.max(self.elec_pos[:, 1]), 'dist_table_density': 100, 'lambd': 0.0, 'R_init': 2 * parut.min_dist(self.elec_pos), 'ext_x': 0.0, 'ext_y': 0.0, 'h': 1.0, 'source_type': 'gauss' } for (prop, default) in default_params.iteritems(): setattr(self, prop, params.get(prop, default)) self.gdX = params.get('gdX', 0.01 * (self.xmax - self.xmin)) self.gdY = params.get('gdY', 0.01 * (self.ymax - self.ymin)) if self.source_type not in ["gauss", "step"]: raise Exception("Incorrect source type!") basis_types = { "step": bf.step_rescale_2D, "gauss": bf.gauss_rescale_2D, "gauss_lim": bf.gauss_rescale_lim_2D, } if self.source_type not in basis_types.keys(): raise Exception("Incorrect source type!") else: self.basis = basis_types.get(self.source_type) nx = (self.xmax - self.xmin)/self.gdX + 1 ny = (self.ymax - self.ymin)/self.gdY + 1 lin_x = np.linspace(self.xmin, self.xmax, nx) lin_y = np.linspace(self.ymin, self.ymax, ny) self.space_X, self.space_Y = np.meshgrid(lin_x, lin_y) (self.X_src, self.Y_src, self.R) = sd.make_src_2D( self.space_X, self.space_Y, self.n_sources, self.ext_x, self.ext_y, self.R_init ) Lx = np.max(self.X_src) - np.min(self.X_src) + self.R Ly = np.max(self.Y_src) - np.min(self.Y_src) + self.R self.dist_max = (Lx**2 + Ly**2)**0.5
def set_parameters(self, params): default_params = { "sigma": 1.0, "n_sources": 100, "xmin": np.min(self.elec_pos[:, 0]), "xmax": np.max(self.elec_pos[:, 0]), "ymin": np.min(self.elec_pos[:, 1]), "ymax": np.max(self.elec_pos[:, 1]), "zmin": np.min(self.elec_pos[:, 2]), "zmax": np.max(self.elec_pos[:, 2]), "dist_table_density": 100, "lambd": 0.0, "R_init": 2 * parut.min_dist(self.elec_pos), "ext_X": 0.0, "ext_Y": 0.0, "ext_Z": 0.0, "h": 1.0, "source_type": "gauss", } for (prop, default) in default_params.iteritems(): setattr(self, prop, params.get(prop, default)) self.gdX = params.get("gdX", 0.05 * (self.xmax - self.xmin)) self.gdY = params.get("gdY", 0.05 * (self.ymax - self.ymin)) self.gdZ = params.get("gdZ", 0.05 * (self.zmax - self.zmin)) self.dist_table_density = 100 self.source_type = params.get("source_type", "gauss") basis_types = {"step": bf.step_rescale_3D, "gauss": bf.gauss_rescale_3D, "gauss_lim": bf.gauss_rescale_lim_3D} if self.source_type not in basis_types.keys(): raise Exception("Incorrect source type!") else: self.basis = basis_types.get(self.source_type) nx = (self.xmax - self.xmin) / self.gdX + 1 ny = (self.ymax - self.ymin) / self.gdY + 1 nz = (self.zmax - self.zmin) / self.gdZ + 1 lin_x = np.linspace(self.xmin, self.xmax, nx) lin_y = np.linspace(self.ymin, self.ymax, ny) lin_z = np.linspace(self.zmin, self.ymax, nz) self.space_X, self.space_Y, self.space_Z = np.meshgrid(lin_x, lin_y, lin_z) (self.X_src, self.Y_src, self.Z_src, self.R) = sd.make_src_3D( self.space_X, self.space_Y, self.space_Z, self.n_sources, self.ext_X, self.ext_Y, self.ext_Z, self.R_init ) Lx = np.max(self.X_src) - np.min(self.X_src) + self.R Ly = np.max(self.Y_src) - np.min(self.Y_src) + self.R Lz = np.max(self.Z_src) - np.min(self.Z_src) + self.R self.dist_max = (Lx ** 2 + Ly ** 2 + Lz ** 2) ** 0.5
def set_parameters(self, params): default_params = { 'sigma': 1.0, 'n_sources': 300, 'xmin': np.min(self.elec_pos), 'xmax': np.max(self.elec_pos), 'dist_density': 200, 'lambd': 0.0, 'R_init': 2 * parut.min_dist(self.elec_pos), 'ext': 0.0, 'h': 1.0, 'source_type': 'gauss_lim' } for (prop, default) in default_params.iteritems(): setattr(self, prop, params.get(prop, default)) self.gdX = params.get('gdX', 0.01 * (self.xmax - self.xmin)) basis_types = { "step": bf.step_rescale_1D, "gauss": bf.gauss_rescale_1D, "gauss_lim": bf.gauss_rescale_lim_1D, } if self.source_type not in basis_types.keys(): raise Exception("Incorrect source type!") else: self.basis = basis_types.get(self.source_type) self.nx = int(np.ceil((self.xmax - self.xmin)/self.gdX)) # space_X is the estimation area self.space_X = np.linspace(self.xmin - self.ext, self.xmax + self.ext, self.nx) (self.X_src, self.R) = sd.make_src_1D(self.space_X, self.ext, self.n_sources, self.R_init) Lx = np.max(self.X_src) - np.min(self.X_src) + self.R self.dist_max = Lx
def set_parameters(self, params): default_params = { 'sigma': 1.0, 'n_sources': 300, 'xmin': np.min(self.elec_pos), 'xmax': np.max(self.elec_pos), 'dist_density': 200, 'lambd': 0.0, 'R_init': 2 * parut.min_dist(self.elec_pos), 'ext': 0.0, 'h': 1.0, 'source_type': 'gauss_lim' } for (prop, default) in default_params.iteritems(): setattr(self, prop, params.get(prop, default)) self.gdX = params.get('gdX', 0.01 * (self.xmax - self.xmin)) basis_types = { "step": bf.step_rescale_1D, "gauss": bf.gauss_rescale_1D, "gauss_lim": bf.gauss_rescale_lim_1D, } if self.source_type not in basis_types.keys(): raise Exception("Incorrect source type!") else: self.basis = basis_types.get(self.source_type) self.nx = int(np.ceil((self.xmax - self.xmin) / self.gdX)) # space_X is the estimation area self.space_X = np.linspace(self.xmin - self.ext, self.xmax + self.ext, self.nx) (self.X_src, self.R) = sd.make_src_1D(self.space_X, self.ext, self.n_sources, self.R_init) Lx = np.max(self.X_src) - np.min(self.X_src) + self.R self.dist_max = Lx