def volume_based_var(atlas_type, volume_type, atlas_main_folder, subj_main_folder): file_name = f'{volume_type}_by_' + atlas_type atlas_labels, mni_atlas_file_name, idx = atlas_and_idx( atlas_type, atlas_main_folder) vol_mat = all_subj_add_vals(file_name, atlas_labels, subj_main_folder, idx) subj_idx = subj_2_include(subj_main_folder, file_name) return vol_mat, mni_atlas_file_name, idx, subj_idx
import glob,os from reading_from_xls.read_details_from_subject_table import * from network_analysis.nodes_network_properties import * from calc_corr_statistics.pearson_r_calc import * from parcellation.group_weight import atlas_and_idx, weight_atlas_by_add, save_as_nii if __name__ == "__main__": main_subj_folders = r'C:\Users\Admin\Desktop\Language' atlas_main_folder = r'C:\Users\Admin\my_scripts\aal\yeo' atlas_type = 'yeo7_200' atlas_labels, mni_atlas_file_name, idx = atlas_and_idx(atlas_type, atlas_main_folder) table1 = SubjTable(r'C:\Users\Admin\Desktop\Language\Subject list - Language.xlsx', 'Sheet1') eff_num_dict = {} eff_add_dict = {} wos1 = [] lws = [] n_subj= 0 for sub in glob.glob(f'{main_subj_folders}{os.sep}*{os.sep}'): sn = sub.split(os.sep)[-2] num_mat_name = sub + 'non-weighted_wholebrain_5d_labmask_yeo7_200_nonnorm.npy' if os.path.exists(num_mat_name): n_subj+=1 num_mat = np.load(num_mat_name) eff_num = (get_local_efficiency(cm=num_mat)) eff_num_dict = merge_dict(eff_num_dict, eff_num) add_mat_name = sub + 'weighted_wholebrain_5d_labmask_yeo7_200_nonnorm.npy' add_mat = np.load(add_mat_name)
import glob, os from reading_from_xls.read_details_from_subject_table import * from calc_corr_statistics.pearson_r_calc import * from parcellation.group_weight import atlas_and_idx, weight_atlas_by_add, save_as_nii from network_analysis.specific_functional_yeo_network import network_id_list from network_analysis.edge_betweeness_centrality_mat import mat_ebc if __name__ == "__main__": main_subj_folders = r'C:\Users\Admin\Desktop\Language' atlas_main_folder = r'C:\Users\Admin\my_scripts\aal\yeo' atlas_type = 'yeo7_200' #id1 = network_id_list(network_type='salventattn')-1 #id2 = network_id_list(network_type='default')-1 #idx = id1+id2 atlas_labels, mni_atlas_label, idx = atlas_and_idx(atlas_type, atlas_main_folder) table1 = SubjTable( r'C:\Users\Admin\Desktop\Language\Subject list - Language.xlsx', 'Sheet1') wos1 = [] lws = [] n_subj = 0 ebc_num = np.zeros((len(idx), len(idx), 1)) ebc_add = np.zeros((len(idx), len(idx), 1)) for sub in glob.glob(f'{main_subj_folders}{os.sep}*{os.sep}'): sn = sub.split(os.sep)[-2] num_mat_name = sub + 'non-weighted_wholebrain_5d_labmask_yeo7_200_nonnorm.npy' if os.path.exists(num_mat_name): n_subj += 1