def sample(self): if self.valid_set is None: nodes = list(self.graph.nodes()) else: assert len(self.valid_set) <= self.graph.number_of_nodes() nodes = list(self.valid_set) if len(nodes) > 0: return nodes[np_random.randint(len(nodes))] else: return None
def sample(self): return np_random.randint(self.n)
def sample(self, valid_list=None): # TODO: need a better implementation for O(1) sampling tmp_list = list(self.set) idx = np_random.randint(len(tmp_list)) return tmp_list[idx]