def solve_problem(eigs, filename=None, use_stdout=False, use_tr=False): # Get the A matrix A = create_random_problem(eigs) # Create the other problem data b = np.random.uniform(size=len(eigs)) Acon = np.random.uniform(size=len(eigs)) bcon = np.random.uniform() problem = Quadratic(A, b, Acon, bcon) if use_tr: # Create the trust region problem max_lbfgs = 10 tr_init_size = 0.05 tr_min_size = 1e-6 tr_max_size = 10.0 tr_eta = 0.25 tr_penalty_gamma = 10.0 qn = ParOpt.LBFGS(problem, subspace=max_lbfgs) tr = ParOpt.TrustRegion(problem, qn, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) tr.setMaxTrustRegionIterations(500) # Set up the optimization problem tr_opt = ParOpt.InteriorPoint(tr, 10, ParOpt.BFGS) if filename is not None and use_stdout is False: tr_opt.setOutputFile(filename) # Set the tolerances tr_opt.setAbsOptimalityTol(1e-8) tr_opt.setStartingPointStrategy(ParOpt.AFFINE_STEP) tr_opt.setStartAffineStepMultiplierMin(0.01) # Set optimization parameters tr_opt.setArmijoParam(1e-5) tr_opt.setMaxMajorIterations(5000) tr_opt.setBarrierPower(2.0) tr_opt.setBarrierFraction(0.1) # optimize tr.setOutputFile(filename + '_tr') tr.setPrintLevel(1) tr.optimize(tr_opt) else: # Set up the optimization problem max_lbfgs = 10 opt = ParOpt.InteriorPoint(problem, max_lbfgs, ParOpt.BFGS) if filename is not None and use_stdout is False: opt.setOutputFile(filename) # Set optimization parameters opt.setArmijoParam(1e-5) opt.setMaxMajorIterations(5000) opt.setBarrierPower(2.0) opt.setBarrierFraction(0.1) opt.optimize() return
def paropt_truss(truss, use_hessian=False, max_qn_subspace=50, qn_type=ParOpt.BFGS): ''' Optimize the given truss structure using ParOpt ''' # Create the optimizer opt = ParOpt.InteriorPoint(truss, max_qn_subspace, qn_type) # Set the optimality tolerance opt.setAbsOptimalityTol(1e-5) # Set the Hessian-vector product iterations if use_hessian: opt.setUseLineSearch(0) opt.setUseHvecProduct(1) opt.setGMRESSubspaceSize(100) opt.setNKSwitchTolerance(1.0) opt.setEisenstatWalkerParameters(0.5, 0.0) opt.setGMRESTolerances(1.0, 1e-30) else: opt.setUseHvecProduct(0) # Set optimization parameters opt.setArmijioParam(1e-5) opt.setMaxMajorIterations(2500) # Perform a quick check of the gradient (and Hessian) opt.checkGradients(1e-6) return opt
def plot_it_all(problem): ''' Plot a carpet plot with the search histories for steepest descent, conjugate gradient and BFGS from the same starting point. ''' # Set up the optimization problem max_lbfgs = 20 opt = ParOpt.InteriorPoint(problem, max_lbfgs, ParOpt.BFGS) # Create the data for the carpet plot n = 150 xlow = -4.0 xhigh = 4.0 x1 = np.linspace(xlow, xhigh, n) r = np.zeros((n, n)) for j in range(n): for i in range(n): fail, fobj, con = problem.evalObjCon([x1[i], x1[j]]) r[j, i] = fobj # Assign the contour levels levels = np.min(r) + np.linspace(0, 1.0, 75)**2*(np.max(r) - np.min(r)) # Create the plot fig = plt.figure(facecolor='w') plt.contour(x1, x1, r, levels) colours = ['-bo', '-ko', '-co', '-mo', '-yo', '-bx', '-kx', '-cx', '-mx', '-yx' ] for k in range(len(colours)): # Optimize the problem problem.x_hist = [] opt.resetQuasiNewtonHessian() opt.setInitBarrierParameter(0.1) opt.setUseLineSearch(1) opt.optimize() # Copy out the steepest descent points sd = np.zeros((2, len(problem.x_hist))) for i in range(len(problem.x_hist)): sd[0, i] = problem.x_hist[i][0] sd[1, i] = problem.x_hist[i][1] plt.plot(sd[0, :], sd[1, :], colours[k], label='IP %d'%(sd.shape[1])) plt.plot(sd[0, -1], sd[1, -1], '-ro') plt.legend() plt.axis([xlow, xhigh, xlow, xhigh]) plt.show()
def paropt_truss(truss, use_hessian=False, prefix='results'): ''' Optimize the given truss structure using ParOpt ''' # Create the optimizer max_qn_subspace = 10 opt = ParOpt.InteriorPoint(truss, max_qn_subspace, ParOpt.BFGS) # Set the optimality tolerance opt.setAbsOptimalityTol(1e-6) opt.setBarrierStrategy(ParOpt.COMPLEMENTARITY_FRACTION) # Set the Hessian-vector product iterations if use_hessian: # opt.setUseLineSearch(0) opt.setUseHvecProduct(1) opt.setGMRESSubspaceSize(25) opt.setNKSwitchTolerance(1.0) opt.setEisenstatWalkerParameters(0.01, 0.0) opt.setGMRESTolerances(1.0, 1e-30) else: opt.setUseHvecProduct(0) # Set the output level opt.setOutputLevel(1) # Set optimization parameters opt.setArmijoParam(1e-5) opt.setMaxMajorIterations(2500) # Set the output file to use fname = os.path.join(prefix, 'truss_paropt%dx%d.out'%(N, M)) opt.setOutputFile(fname) # Optimize the truss opt.optimize() return opt
def solve_problem(eigs, filename=None, data_type='orthogonal', use_tr=False): # Create a random orthogonal Q vector if data_type == 'orthogonal': B = np.random.uniform(size=(n, n)) Q, s, v = np.linalg.svd(B) # Create a random Affine matrix Affine = create_random_spd(eigs) else: Q = np.random.uniform(size=(n, n)) Affine = np.diag(1e-3 * np.ones(n)) # Create the random right-hand-side b = np.random.uniform(size=n) # Create the constraint data Acon = np.random.uniform(size=n) bcon = 0.25 * np.sum(Acon) # Create the convex problem problem = ConvexProblem(Q, Affine, b, Acon, bcon) if use_tr: # Create the trust region problem max_lbfgs = 10 tr_init_size = 0.05 tr_min_size = 1e-6 tr_max_size = 10.0 tr_eta = 0.1 tr_penalty_gamma = 10.0 qn = ParOpt.LBFGS(problem, subspace=max_lbfgs) subproblem = ParOpt.QuadraticSubproblem(problem, qn) tr = ParOpt.TrustRegion(subproblem, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) tr.setMaxTrustRegionIterations(500) infeas_tol = 1e-6 l1_tol = 1e-5 linfty_tol = 1e-5 tr.setTrustRegionTolerances(infeas_tol, l1_tol, linfty_tol) # Set up the optimization problem tr_opt = ParOpt.InteriorPoint(subproblem, 10, ParOpt.BFGS) if filename is not None: tr_opt.setOutputFile(filename) tr.setOutputFile(os.path.splitext(filename)[0] + '.tr') # Set the tolerances tr_opt.setAbsOptimalityTol(1e-8) tr_opt.setStartingPointStrategy(ParOpt.AFFINE_STEP) tr_opt.setStartAffineStepMultiplierMin(0.01) # Set optimization parameters tr_opt.setArmijoParam(1e-5) tr_opt.setMaxMajorIterations(5000) tr_opt.setBarrierPower(2.0) tr_opt.setBarrierFraction(0.1) # optimize tr.setPrintLevel(1) tr.optimize(tr_opt) # Get the optimized point from the trust-region subproblem x = tr.getOptimizedPoint() else: # Set up the optimization problem max_lbfgs = 50 opt = ParOpt.InteriorPoint(problem, max_lbfgs, ParOpt.BFGS) if filename is not None: opt.setOutputFile(filename) # Set optimization parameters opt.setArmijoParam(1e-5) opt.setMaxMajorIterations(5000) opt.setBarrierPower(2.0) opt.setBarrierFraction(0.1) opt.optimize() # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() return x
def __call__(self, optProb, sens=None, sensStep=None, sensMode=None, storeHistory=None, hotStart=None, storeSens=True): """ This is the main routine used to solve the optimization problem. Parameters ---------- optProb : Optimization or Solution class instance This is the complete description of the optimization problem to be solved by the optimizer sens : str or python Function. Specifiy method to compute sensitivities. To explictly use pyOptSparse gradient class to do the derivatives with finite differenes use \'FD\'. \'sens\' may also be \'CS\' which will cause pyOptSpare to compute the derivatives using the complex step method. Finally, \'sens\' may be a python function handle which is expected to compute the sensitivities directly. For expensive function evaluations and/or problems with large numbers of design variables this is the preferred method. sensStep : float Set the step size to use for design variables. Defaults to 1e-6 when sens is \'FD\' and 1e-40j when sens is \'CS\'. sensMode : str Use \'pgc\' for parallel gradient computations. Only available with mpi4py and each objective evaluation is otherwise serial storeHistory : str File name of the history file into which the history of this optimization will be stored hotStart : str File name of the history file to "replay" for the optimziation. The optimization problem used to generate the history file specified in \'hotStart\' must be **IDENTICAL** to the currently supplied \'optProb\'. By identical we mean, **EVERY SINGLE PARAMETER MUST BE IDENTICAL**. As soon as he requested evaluation point from ParOpt does not match the history, function and gradient evaluations revert back to normal evaluations. storeSens : bool Flag sepcifying if sensitivities are to be stored in hist. This is necessay for hot-starting only. """ self.callCounter = 0 self.storeSens = storeSens if len(optProb.constraints) == 0: # If the problem is unconstrained, add a dummy constraint. self.unconstrained = True optProb.dummyConstraint = True # Save the optimization problem and finalize constraint # jacobian, in general can only do on root proc self.optProb = optProb self.optProb.finalizeDesignVariables() self.optProb.finalizeConstraints() self._setInitialCacheValues() self._setSens(sens, sensStep, sensMode) blx, bux, xs = self._assembleContinuousVariables() xs = np.maximum(xs, blx) xs = np.minimum(xs, bux) # The number of design variables n = len(xs) oneSided = True if self.unconstrained: m = 0 else: indices, blc, buc, fact = self.optProb.getOrdering( ['ne', 'le', 'ni', 'li'], oneSided=oneSided) m = len(indices) self.optProb.jacIndices = indices self.optProb.fact = fact self.optProb.offset = buc if self.optProb.comm.rank == 0: # Set history/hotstart self._setHistory(storeHistory, hotStart) class Problem(_ParOpt.Problem): def __init__(self, ptr, n, m, xs, blx, bux): super(Problem, self).__init__(MPI.COMM_SELF, n, m) self.ptr = ptr self.n = n self.m = m self.xs = xs self.blx = blx self.bux = bux self.fobj = 0.0 return def getVarsAndBounds(self, x, lb, ub): '''Get the variable values and bounds''' lb[:] = self.blx ub[:] = self.bux x[:] = self.xs return def evalObjCon(self, x): '''Evaluate the objective and constraint values''' fobj, fcon, fail = self.ptr._masterFunc( x[:], ['fobj', 'fcon']) self.fobj = fobj return fail, fobj, -fcon def evalObjConGradient(self, x, g, A): gobj, gcon, fail = self.ptr._masterFunc( x[:], ['gobj', 'gcon']) g[:] = gobj[:] for i in range(self.m): A[i][:] = -gcon[i][:] return fail # Create the ParOpt problem class problem = Problem(self, n, m, xs, blx, bux) # Get the algorithm/subspace size parameters algorithm = self.getOption('algorithm').lower() qn_subspace_size = self.getOption('qn_subspace_size') filename = self.getOption('filename') optTime = MPI.Wtime() if algorithm == 'ip': # Create the optimizer opt = _ParOpt.InteriorPoint(problem, qn_subspace_size, _ParOpt.BFGS) # Set the ParOpt options self._set_paropt_options(opt) # Optimize! opt.setOutputFile(filename) opt.optimize() else: norm_type = self.getOption('norm_type').lower() # Optimality tolerance opt_tol = self.getOption('abs_optimality_tol') # Trust region algorithm options tr_init_size = self.getOption('tr_init_size') tr_max_size = self.getOption('tr_max_size') tr_min_size = self.getOption('tr_min_size') tr_eta = self.getOption('tr_eta') tr_penalty_gamma = self.getOption('tr_penalty_gamma') tr_opt_abs_tol = self.getOption('tr_abs_optimality_tol') tr_max_iterations = self.getOption('tr_max_iterations') # Create the quasi-Newton Hessian approximation qn = _ParOpt.LBFGS(problem, subspace=qn_subspace_size) # Create the trust region problem tr = _ParOpt.TrustRegion(problem, qn, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Create the ParOpt problem opt = _ParOpt.InteriorPoint(tr, qn_subspace_size, _ParOpt.NO_HESSIAN_APPROX) # Set the ParOpt options self._set_paropt_options(opt) # Set the output file name opt.setOutputFile(filename) # Set the penalty parameter internally in the # code. These must be consistent between the trust # region object and ParOpt. opt.setPenaltyGamma(tr_penalty_gamma) # Set parameters for ParOpt in the subproblem opt.setMaxMajorIterations(tr_max_iterations) opt.setAbsOptimalityTol(tr_opt_abs_tol) # Don't update the quasi-Newton method opt.setQuasiNewton(qn) opt.setUseQuasiNewtonUpdates(0) # Check the norm type if norm_type == 'l1': opt.setNormType(_ParOpt.L1_NORM) elif norm_type == 'linfty': opt.setNormType(_ParOpt.INFTY_NORM) else: opt.setNormType(_ParOpt.L2_NORM) # Initialize the problem tr.initialize() # Iterate max_iterations = self.getOption('max_iterations') for i in range(max_iterations): opt.setInitBarrierParameter(100.0) opt.resetDesignAndBounds() opt.optimize() # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() # Update the trust region method infeas, l1, linfty = tr.update(x, z, zw) if norm_type == 'l1': opt_criteria = (l1 < opt_tol) else: opt_criteria = (linfty < opt_tol) if ((infeas < opt_tol) and opt_criteria): break # Set the total opt time optTime = MPI.Wtime() - optTime # Get the obective function value fobj = problem.fobj # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() # Create the optimization solution sol_inform = {} sol = self._createSolution(optTime, sol_inform, fobj, x[:]) # Indicate solution finished self.optProb.comm.bcast(-1, root=0) else: # We are not on the root process so go into waiting loop: self._waitLoop() sol = None # Communication solution and return sol = self._communicateSolution(sol) return sol
tr_eta = 0.2 tr_penalty_gamma = 10.0 tr = ParOpt.TrustRegion(problem, qn, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Set the tolerances infeas_tol = 1e-4 l1_tol = 1e-3 linfty_tol = 1e-3 tr.setTrustRegionTolerances(infeas_tol, l1_tol, linfty_tol) # Set the maximum number of iterations tr.setMaxTrustRegionIterations(100) # Set up the optimization problem tr_opt = ParOpt.InteriorPoint(tr, 2, ParOpt.BFGS) # Set up the optimization problem tr_opt.setOutputFile('topo_optimization_paropt.out') # Set the tolerances tr_opt.setAbsOptimalityTol(1e-8) tr_opt.setStartingPointStrategy(ParOpt.AFFINE_STEP) tr_opt.setStartAffineStepMultiplierMin(0.01) # Set optimization parameters tr_opt.setArmijoParam(1e-5) tr_opt.setMaxMajorIterations(5000) tr_opt.setBarrierPower(2.0) tr_opt.setBarrierFraction(0.1)
'''Evaluate the objective and constraint''' fail = 0 fobj = x[1] * x[1] + x[0] + x[2] + np.exp(-x[3]) cons = np.array([x[0] + x[1] - 1.0]) return fail, fobj, cons def evalObjConGradient(self, x, g, A): '''Evaluate the objective and constraint gradient''' fail = 0 g[0] = 1.0 g[1] = 2.0 * x[1] g[2] = 1.0 g[3] = -np.exp(-x[3]) A[0][0] = 1.0 A[0][1] = 1.0 return fail # Allocate the optimization problem problem = Sellar() # Set up the optimization problem max_lbfgs = 50 opt = ParOpt.InteriorPoint(problem, max_lbfgs, ParOpt.BFGS) # Optimize opt.optimize()
subproblem = ParOpt.QuadraticSubproblem(problem, qn) tr = ParOpt.TrustRegion(subproblem, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Set the tolerances infeas_tol = 1e-4 l1_tol = 1e-3 linfty_tol = 1e-3 tr.setTrustRegionTolerances(infeas_tol, l1_tol, linfty_tol) # Set the maximum number of iterations tr.setMaxTrustRegionIterations(200) # Set up the optimization problem tr_opt = ParOpt.InteriorPoint(subproblem, 2, ParOpt.BFGS) # Set up the optimization problem tr_opt.setOutputFile('topo_optimization_paropt.out') # Set the tolerances tr_opt.setAbsOptimalityTol(1e-8) tr_opt.setStartingPointStrategy(ParOpt.AFFINE_STEP) tr_opt.setStartAffineStepMultiplierMin(0.01) # Set optimization parameters tr_opt.setArmijoParam(1e-5) tr_opt.setMaxMajorIterations(5000) tr_opt.setBarrierPower(2.0) tr_opt.setBarrierFraction(0.1)
def plot_it_all(problem, use_tr=False): ''' Plot a carpet plot with the search histories for steepest descent, conjugate gradient and BFGS from the same starting point. ''' # Set up the optimization problem max_lbfgs = 20 opt = ParOpt.InteriorPoint(problem, max_lbfgs, ParOpt.BFGS) opt.checkGradients(1e-6) # Create the data for the carpet plot n = 150 xlow = -4.0 xhigh = 4.0 x1 = np.linspace(xlow, xhigh, n) ylow = -3.0 yhigh = 3.0 x2 = np.linspace(ylow, yhigh, n) r = np.zeros((n, n)) for j in range(n): for i in range(n): fail, fobj, con = problem.evalObjCon([x1[i], x2[j]]) r[j, i] = fobj # Assign the contour levels levels = np.min(r) + np.linspace(0, 1.0, 75)**2 * (np.max(r) - np.min(r)) # Create the plot fig = plt.figure(facecolor='w') plt.contour(x1, x2, r, levels) plt.plot([0.5 - yhigh, 0.5 - ylow], [yhigh, ylow], '-k') colours = [ '-bo', '-ko', '-co', '-mo', '-yo', '-bx', '-kx', '-cx', '-mx', '-yx' ] for k in range(len(colours)): # Optimize the problem problem.x_hist = [] if use_tr: # Create the quasi-Newton Hessian approximation qn = ParOpt.LBFGS(problem, subspace=2) # Create the trust region problem tr_init_size = 0.05 tr_min_size = 1e-6 tr_max_size = 10.0 tr_eta = 0.25 tr_penalty_gamma = 10.0 tr = ParOpt.TrustRegion(problem, qn, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Set up the optimization problem tr_opt = ParOpt.InteriorPoint(tr, 2, ParOpt.BFGS) # Optimize tr.optimize(tr_opt) # Get the optimized point x, z, zw, zl, zu = tr_opt.getOptimizedPoint() else: opt.resetQuasiNewtonHessian() opt.setInitBarrierParameter(0.1) opt.setUseLineSearch(1) opt.optimize() # Get the optimized point and print out the data x, z, zw, zl, zu = opt.getOptimizedPoint() # Copy out the steepest descent points popt = np.zeros((2, len(problem.x_hist))) for i in range(len(problem.x_hist)): popt[0, i] = problem.x_hist[i][0] popt[1, i] = problem.x_hist[i][1] plt.plot(popt[0, :], popt[1, :], colours[k], label='ParOpt %d' % (popt.shape[1])) plt.plot(popt[0, -1], popt[1, -1], '-ro') # Print the data to the screen g = np.zeros(2) A = np.zeros((1, 2)) problem.evalObjConGradient(x, g, A) print('The design variables: ', x[:]) print('The multipliers: ', z[:]) print('The objective gradient: ', g[:]) print('The constraint gradient: ', A[:]) ax = fig.axes[0] ax.set_aspect('equal', 'box') plt.legend() plt.show()
def __call__(self, optProb, sens=None, sensStep=None, sensMode=None, storeHistory=None, hotStart=None, storeSens=True): """ This is the main routine used to solve the optimization problem. Parameters ---------- optProb : Optimization or Solution class instance This is the complete description of the optimization problem to be solved by the optimizer sens : str or python Function. Specifiy method to compute sensitivities. To explictly use pyOptSparse gradient class to do the derivatives with finite differenes use \'FD\'. \'sens\' may also be \'CS\' which will cause pyOptSpare to compute the derivatives using the complex step method. Finally, \'sens\' may be a python function handle which is expected to compute the sensitivities directly. For expensive function evaluations and/or problems with large numbers of design variables this is the preferred method. sensStep : float Set the step size to use for design variables. Defaults to 1e-6 when sens is \'FD\' and 1e-40j when sens is \'CS\'. sensMode : str Use \'pgc\' for parallel gradient computations. Only available with mpi4py and each objective evaluation is otherwise serial storeHistory : str File name of the history file into which the history of this optimization will be stored hotStart : str File name of the history file to "replay" for the optimziation. The optimization problem used to generate the history file specified in \'hotStart\' must be **IDENTICAL** to the currently supplied \'optProb\'. By identical we mean, **EVERY SINGLE PARAMETER MUST BE IDENTICAL**. As soon as he requested evaluation point from ParOpt does not match the history, function and gradient evaluations revert back to normal evaluations. storeSens : bool Flag sepcifying if sensitivities are to be stored in hist. This is necessay for hot-starting only. """ self.callCounter = 0 self.storeSens = storeSens if len(optProb.constraints) == 0: # If the problem is unconstrained, add a dummy constraint. self.unconstrained = True optProb.dummyConstraint = True # Save the optimization problem and finalize constraint # jacobian, in general can only do on root proc self.optProb = optProb self.optProb.finalizeDesignVariables() self.optProb.finalizeConstraints() self._setInitialCacheValues() self._setSens(sens, sensStep, sensMode) blx, bux, xs = self._assembleContinuousVariables() xs = np.maximum(xs, blx) xs = np.minimum(xs, bux) # The number of design variables n = len(xs) oneSided = True if self.unconstrained: m = 0 else: indices, blc, buc, fact = self.optProb.getOrdering( ["ne", "le", "ni", "li"], oneSided=oneSided) m = len(indices) self.optProb.jacIndices = indices self.optProb.fact = fact self.optProb.offset = buc if self.optProb.comm.rank == 0: # Set history/hotstart self._setHistory(storeHistory, hotStart) class Problem(_ParOpt.Problem): def __init__(self, ptr, n, m, xs, blx, bux): super(Problem, self).__init__(MPI.COMM_SELF, n, m) self.ptr = ptr self.n = n self.m = m self.xs = xs self.blx = blx self.bux = bux self.fobj = 0.0 return def getVarsAndBounds(self, x, lb, ub): """Get the variable values and bounds""" # Find the average distance between lower and upper bound bound_sum = 0.0 for i in range(len(x)): if self.blx[i] <= -1e20 or self.bux[i] >= 1e20: bound_sum += 1.0 else: bound_sum += self.bux[i] - self.blx[i] bound_sum = bound_sum / len(x) for i in range(len(x)): x[i] = self.xs[i] lb[i] = self.blx[i] ub[i] = self.bux[i] if self.xs[i] <= self.blx[i]: x[i] = self.blx[i] + 0.5 * np.min( (bound_sum, self.bux[i] - self.blx[i])) elif self.xs[i] >= self.bux[i]: x[i] = self.bux[i] - 0.5 * np.min( (bound_sum, self.bux[i] - self.blx[i])) return def evalObjCon(self, x): """Evaluate the objective and constraint values""" fobj, fcon, fail = self.ptr._masterFunc( x[:], ["fobj", "fcon"]) self.fobj = fobj return fail, fobj, -fcon def evalObjConGradient(self, x, g, A): gobj, gcon, fail = self.ptr._masterFunc( x[:], ["gobj", "gcon"]) g[:] = gobj[:] for i in range(self.m): A[i][:] = -gcon[i][:] return fail # Create the ParOpt problem class problem = Problem(self, n, m, xs, blx, bux) # Get the algorithm/subspace size parameters algorithm = self.getOption("algorithm").lower() qn_subspace_size = self.getOption("qn_subspace_size") filename = self.getOption("filename") optTime = MPI.Wtime() if algorithm == "ip": # Create the optimizer opt = _ParOpt.InteriorPoint(problem, qn_subspace_size, _ParOpt.BFGS) # Set the ParOpt options self._set_paropt_options(opt) # Optimize! opt.setOutputFile(filename) opt.optimize() else: # Optimality tolerance opt_tol = self.getOption("abs_optimality_tol") # Trust region algorithm options tr_init_size = self.getOption("tr_init_size") tr_max_size = self.getOption("tr_max_size") tr_min_size = self.getOption("tr_min_size") tr_eta = self.getOption("tr_eta") tr_penalty_gamma = self.getOption("tr_penalty_gamma") tr_opt_abs_tol = self.getOption("tr_abs_optimality_tol") tr_max_iterations = self.getOption("tr_max_iterations") # Create the quasi-Newton Hessian approximation qn = _ParOpt.LBFGS(problem, subspace=qn_subspace_size) subproblem = _ParOpt.QuadraticSubproblem(problem, qn) # Create the trust region problem tr = _ParOpt.TrustRegion(subproblem, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Create the ParOpt problem opt = _ParOpt.InteriorPoint(subproblem, qn_subspace_size, _ParOpt.NO_HESSIAN_APPROX) # Set the ParOpt options self._set_paropt_options(opt) # Set the output file name opt.setOutputFile(filename) tr.setOutputFile(os.path.splitext(filename)[0] + ".tr") # Use the adaptive penalty update scheme by default tr.setAdaptiveGammaUpdate(1) tr.setPenaltyGammaMax(1e3) # Set parameters for the trust-region algorithm tr.setMaxTrustRegionIterations(tr_max_iterations) # Set the tolerance tr.setTrustRegionTolerances(opt_tol, opt_tol, opt_tol) # Set optimality tolerance for the trust region problem opt.setAbsOptimalityTol(tr_opt_abs_tol) # Optimize the problem tr.optimize(opt) # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() # Set the total opt time optTime = MPI.Wtime() - optTime # Get the obective function value fobj = problem.fobj # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() if self.storeHistory: self.metadata["endTime"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") self.metadata["optTime"] = optTime self.hist.writeData("metadata", self.metadata) self.hist.close() # Create the optimization solution. Note that the signs on the multipliers # are switch since ParOpt uses a formulation with c(x) >= 0, while pyOpt # uses g(x) = -c(x) <= 0. Therefore the multipliers are reversed. sol_inform = {} # If number of constraints is zero, ParOpt returns z as None. # Thus if there is no constraints, should pass an empty list # to multipliers instead of z. if z is not None: sol = self._createSolution(optTime, sol_inform, fobj, x[:], multipliers=-z) else: sol = self._createSolution(optTime, sol_inform, fobj, x[:], multipliers=[]) # Indicate solution finished self.optProb.comm.bcast(-1, root=0) else: # We are not on the root process so go into waiting loop: self._waitLoop() sol = None # Communication solution and return sol = self._communicateSolution(sol) return sol
max_mma_iters = 10 problem = Toy(comm) problem.setInequalityOptions(dense_ineq=True, sparse_ineq=False, use_lower=True, use_upper=True) # Set the ParOpt problem into MMA mma = ParOpt.MMA(problem, use_mma=True) mma.setInitAsymptoteOffset(0.5) mma.setMinAsymptoteOffset(0.01) mma.setBoundRelax(1e-4) mma.setOutputFile(os.path.join(args.prefix, 'mma_output.out')) # Create the ParOpt problem opt = ParOpt.InteriorPoint(mma, args.max_lbfgs, ParOpt.BFGS) # Set parameters opt.setMaxMajorIterations(args.max_opt_iters) opt.setHessianResetFreq(args.hessian_reset) opt.setAbsOptimalityTol(args.opt_abs_tol) opt.setBarrierFraction(args.opt_barrier_frac) opt.setBarrierPower(args.opt_barrier_power) opt.setOutputFrequency(args.output_freq) opt.setAbsOptimalityTol(1e-7) opt.setUseDiagHessian(1) # Set the starting point using the mass fraction x = mma.getOptimizedPoint() print('Initial x = ', np.array(x))
def _setup_driver(self, problem): """ Prepare the driver for execution. This is the final thing to run during setup. Parameters ---------- paropt_problem : <Problem> Pointer """ # TODO: # - logic for different opt algorithms # - treat equality constraints super(ParOptDriver, self)._setup_driver(problem) opt_type = self.options['optimizer'] # Raise error if multiple objectives are provided if len(self._objs) > 1: msg = 'ParOpt currently does not support multiple objectives.' raise RuntimeError(msg.format(self.__class__.__name__)) # Set the limited-memory options max_qn_subspace = self.options['max_qn_subspace'] if self.options['qn_type'] == 'BFGS': qn_type = ParOpt.BFGS elif self.options['qn_type'] == 'SR1': qn_type = ParOpt.SR1 elif self.options['qn_type'] == 'No Hessian approx': qn_type = ParOpt.NO_HESSIAN_APPROX else: qn_type = ParOpt.BFGS # Create the ParOptProblem from the OpenMDAO problem self.paropt_problem = ParOptProblem(problem) # Create the problem if opt_type == 'Trust Region': # For the trust region method, you have to use a Hessian # approximation if qn_type == ParOpt.NO_HESSIAN_APPROX: qn = ParOpt.BFGS if max_qn_subspace < 1: max_qn_subspace = 1 # Create the quasi-Newton method qn = ParOpt.LBFGS(self.paropt_problem, subspace=max_qn_subspace) # Retrieve the options for the trust region problem tr_min_size = self.options['tr_min_size'] tr_max_size = self.options['tr_max_size'] tr_eta = self.options['tr_eta'] tr_penalty_gamma = self.options['tr_penalty_gamma'] tr_init_size = self.options['tr_init_size'] # Create the trust region sub-problem tr_init_size = min(tr_max_size, max(tr_init_size, tr_min_size)) tr = ParOpt.TrustRegion(self.paropt_problem, qn, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Set the penalty parameter tr.setPenaltyGammaMax(self.options['tr_penalty_gamma_max']) tr.setMaxTrustRegionIterations(self.options['tr_max_iterations']) # Trust region convergence tolerances infeas_tol = self.options['tr_infeas_tol'] l1_tol = self.options['tr_l1_tol'] linfty_tol = self.options['tr_linfty_tol'] tr.setTrustRegionTolerances(infeas_tol, l1_tol, linfty_tol) # Trust region output file name if self.options['tr_output_file'] is not None: tr.setOutputFile(self.options['tr_output_file']) tr.setOutputFrequency(self.options['tr_write_output_freq']) # Create the interior-point optimizer for the trust region sub-problem opt = ParOpt.InteriorPoint(tr, 0, ParOpt.NO_HESSIAN_APPROX) self.tr = tr else: # Create the ParOpt object with the interior point method opt = ParOpt.InteriorPoint(self.paropt_problem, max_qn_subspace, qn_type) # Apply the options to ParOpt # Currently incomplete opt.setAbsOptimalityTol(self.options['tol']) opt.setMaxMajorIterations(self.options['maxiter']) if self.options['dh']: opt.checkGradients(self.options['dh']) # Set barrier strategy if self.options['barrier_strategy']: if self.options['barrier_strategy'] == 'Monotone': barrier_strategy = ParOpt.MONOTONE elif self.options['barrier_strategy'] == 'Mehrotra': barrier_strategy = ParOpt.MEHROTRA elif self.options[ 'barrier_strategy'] == 'Complementarity fraction': barrier_strategy = ParOpt.COMPLEMENTARITY_FRACTION opt.setBarrierStrategy(barrier_strategy) # Set starting point strategy if self.options['start_strategy']: if self.options['barrier_strategy'] == 'None': start_strategy = ParOpt.NO_START_STRATEGY elif self.options[ 'barrier_strategy'] == 'Least squares multipliers': start_strategy = ParOpt.LEAST_SQUARES_MULTIPLIERS elif self.options['barrier_strategy'] == 'Affine step': start_strategy = ParOpt.AFFINE_STEP opt.setStartingPointStrategy(start_strategy) # Set norm type if self.options['norm_type']: if self.options['norm_type'] == 'Infinity': norm_type = ParOpt.INFTY_NORM elif self.options['norm_type'] == 'L1': norm_type = ParOpt.L1_NORM elif self.options['norm_type'] == 'L2': norm_type = ParOpt.L2_NORM opt.setBarrierStrategy(norm_type) # Set BFGS update strategy if self.options['bfgs_update_type']: if self.options['bfgs_update_type'] == 'Skip negative': bfgs_update_type = ParOpt.SKIP_NEGATIVE_CURVATURE elif self.options['bfgs_update_type'] == 'Damped': bfgs_update_type = ParOpt.DAMPED_UPDATE opt.setBFGSUpdateType(bfgs_update_type) if self.options['penalty_gamma']: opt.setPenaltyGamma(self.options['penalty_gamma']) if self.options['barrier_fraction']: opt.setBarrierFraction(self.options['barrier_fraction']) if self.options['barrier_power']: opt.setBarrierPower(self.options['barrier_power']) if self.options['hessian_reset_freq']: opt.setHessianResetFrequency(self.options['hessian_reset_freq']) if self.options['qn_diag_factor']: opt.setQNDiagonalFactor(self.options['qn_diag_factor']) if self.options['use_sequential_linear']: opt.setSequentialLinearMethod( self.options['use_sequential_linear']) if self.options['affine_step_multiplier_min']: opt.setStartAffineStepMultiplierMin( self.options['affine_step_multiplier_min']) if self.options['init_barrier_parameter']: opt.setInitBarrierParameter(self.options['init_barrier_parameter']) if self.options['relative_barrier']: opt.setRelativeBarrier(self.options['relative_barrier']) if self.options['set_qn']: opt.setQuasiNewton(self.options['set_qn']) if self.options['qn_updates']: opt.setUseQuasiNewtonUpdates(self.options['qn_updates']) if self.options['use_line_search']: opt.setUseLineSearch(self.options['use_line_search']) if self.options['max_ls_iters']: opt.setMaxLineSearchIters(self.options['max_ls_iters']) if self.options['backtrack_ls']: opt.setBacktrackingLineSearch(self.options['backtrack_ls']) if self.options['armijo_param']: opt.setArmijoParam(self.options['armijo_param']) if self.options['penalty_descent_frac']: opt.setPenaltyDescentFraction(self.options['penalty_descent_frac']) if self.options['min_penalty_param']: opt.setMinPenaltyParameter(self.options['min_penalty_param']) if self.options['use_hvec_prod']: opt.setUseHvecProduct(self.options['use_hvec_prod']) if self.options['use_diag_hessian']: opt.setUseDiagHessian(self.options['use_diag_hessian']) if self.options['use_qn_gmres_precon']: opt.setUseQNGMRESPreCon(self.options['use_qn_gmres_precon']) if self.options['set_nk_switch_tol']: opt.setNKSwitchTolerance(self.options['set_nk_switch_tol']) if self.options['eisenstat_walker_param']: opt.setEisenstatWalkerParameters( self.options['eisenstat_walker_param'][0], self.options['eisenstat_walker_param'][1]) if self.options['gmres_tol']: opt.setGMRESTolerances(self.options['gmres_tol'][0], self.options['gmres_tol'][1]) if self.options['gmres_subspace_size']: opt.setGMRESSubspaceSize(self.options['gmres_subspace_size']) if self.options['output_freq']: opt.setOutputFrequency(self.options['output_freq']) if self.options['output_file']: opt.setOutputFile(self.options['output_file']) if self.options['major_iter_step_check']: opt.setMajorIterStepCheck(self.options['major_iter_step_check']) if self.options['output_level']: opt.setOutputLevel(self.options['output_level']) if self.options['grad_check_freq']: opt.setGradCheckFrequency(self.options['grad_check_freq']) # This opt object will be used again when 'run' is executed self.opt = opt return