Example #1
0
def build_vocab_from_pcfg(pcfg, min_freq=0, top_k=np.infty)->Vocab:
    vocab = Vocab()
    vocab.add_token("(")
    vocab.add_token(")")
    for rule in pcfg.productions():
        vocab.add_token(str(rule.lhs()))
        for rhse in rule.rhs():
            vocab.add_token(str(rhse))
    vocab.finalize(min_freq=min_freq, top_k=top_k)
    return vocab
Example #2
0
def load_ds(dataset="scan/random",
            validfrac=0.1,
            recompute=False,
            bertname="bert-base-uncased"):
    tt = q.ticktock("data")
    tt.tick(f"loading '{dataset}'")
    if bertname.startswith("none"):
        bertname = "bert" + bertname[4:]
    if dataset.startswith("cfq/") or dataset.startswith("scan/mcd"):
        key = f"{dataset}|bertname={bertname}"
        print(f"validfrac is ineffective with dataset '{dataset}'")
    else:
        key = f"{dataset}|validfrac={validfrac}|bertname={bertname}"

    shelfname = os.path.basename(__file__) + ".cache.shelve"
    if not recompute:
        tt.tick(f"loading from shelf (key '{key}')")
        with shelve.open(shelfname) as shelf:
            if key not in shelf:
                recompute = True
                tt.tock("couldn't load from shelf")
            else:
                shelved = shelf[key]
                trainex, validex, testex, fldic = shelved["trainex"], shelved[
                    "validex"], shelved["testex"], shelved["fldic"]
                inpdic = shelved["inpdic"] if "inpdic" in shelved else None
                trainds, validds, testds = Dataset(trainex), Dataset(
                    validex), Dataset(testex)
                tt.tock("loaded from shelf")

    if recompute:
        tt.tick("loading data")
        splits = dataset.split("/")
        dataset, splits = splits[0], splits[1:]
        split = "/".join(splits)
        if dataset == "scan":
            ds = SCANDatasetLoader().load(split, validfrac=validfrac)
        elif dataset == "cfq":
            ds = CFQDatasetLoader().load(split + "/modent")
        else:
            raise Exception(f"Unknown dataset: '{dataset}'")
        tt.tock("loaded data")

        tt.tick("creating tokenizer")
        tokenizer = Tokenizer(bertname=bertname)
        tt.tock("created tokenizer")

        print(len(ds))

        tt.tick("dictionaries")
        inpdic = Vocab()
        inplens, outlens = [0], []
        fldic = Vocab()
        for x in ds:
            outtoks = tokenizer.get_out_toks(x[1])
            outlens.append(len(outtoks))
            for tok in outtoks:
                fldic.add_token(tok, seen=x[2] == "train")
            inptoks = tokenizer.get_toks(x[0])
            for tok in inptoks:
                inpdic.add_token(tok, seen=x[2] == "train")
        inpdic.finalize(min_freq=0, top_k=np.infty)
        fldic.finalize(min_freq=0, top_k=np.infty)
        print(
            f"input avg/max length is {np.mean(inplens):.1f}/{max(inplens)}, output avg/max length is {np.mean(outlens):.1f}/{max(outlens)}"
        )
        print(
            f"output vocabulary size: {len(fldic.D)} at output, {len(inpdic.D)} at input"
        )
        tt.tock()

        tt.tick("tensorizing")
        tokenizer.inpvocab = inpdic
        tokenizer.outvocab = fldic
        trainds = ds.filter(lambda x: x[-1] == "train").map(
            lambda x: x[:-1]).map(
                lambda x: tokenizer.tokenize(x[0], x[1])).cache(True)
        validds = ds.filter(lambda x: x[-1] == "valid").map(
            lambda x: x[:-1]).map(
                lambda x: tokenizer.tokenize(x[0], x[1])).cache(True)
        testds = ds.filter(lambda x: x[-1] == "test").map(
            lambda x: x[:-1]).map(
                lambda x: tokenizer.tokenize(x[0], x[1])).cache(True)
        # ds = ds.map(lambda x: tokenizer.tokenize(x[0], x[1]) + (x[2],)).cache(True)
        tt.tock("tensorized")

        tt.tick("shelving")
        with shelve.open(shelfname) as shelf:
            shelved = {
                "trainex": trainds.examples,
                "validex": validds.examples,
                "testex": testds.examples,
                "fldic": fldic,
                "inpdic": inpdic,
            }
            shelf[key] = shelved
        tt.tock("shelved")

    tt.tock(f"loaded '{dataset}'")
    tt.msg(
        f"#train={len(trainds)}, #valid={len(validds)}, #test={len(testds)}")

    tt.msg("Overlap of validation with train:")
    overlaps = compute_overlaps(trainds, validds)
    print(json.dumps(overlaps, indent=4))

    tt.msg("Overlap of test with train:")
    overlaps = compute_overlaps(trainds, testds)
    print(json.dumps(overlaps, indent=4))

    return trainds, validds, testds, fldic, inpdic