def __init__(self, token_vocab, *args, **kwargs): """""" super(BaseVocab, self).__init__(*args, **kwargs) self._cased = super(BaseVocab, self).cased SubtokenVocab.__setattr__(self, '_token_vocab', token_vocab) self._multibucket = Multibucket.from_configurable(self, embed_model=self.embed_model, name=self.name) self._vocabs = [NgramVocab.from_vocab(self.token_vocab, i+1, cased=self.cased) for i in xrange(self.max_n)] self._special_tokens = super(BaseVocab, self).special_tokens self._special_tokens_set = set(self._special_tokens) SubtokenVocab._set_special_tokens(self) self._tok2idx = {} for vocab in self: assert vocab.token_vocab is self.token_vocab return
def generate_placeholder(self): return SubtokenVocab.generate_placeholder(self)
def index(self, token): return SubtokenVocab.index(self, token)
def __call__(self, placeholder, keep_prob=None, moving_params=None): print('===ngram_multivocab.py: Call ', ' name=', self.name) return SubtokenVocab.__call__(self, placeholder, keep_prob=keep_prob, moving_params=moving_params)
def __call__(self, placeholder, keep_prob=None, moving_params=None): return SubtokenVocab.__call__(self, placeholder, keep_prob=keep_prob, moving_params=moving_params)