# Now need to make the gene samples and snp samples match up
desired_samples = gene_samples

num_haploids = len(desired_samples)

# Calculate which pairs of idxs belong to the same sample, which to the same subject
# and which to different subjects
#desired_same_sample_idxs, desired_same_subject_idxs, desired_diff_subject_idxs = parse_midas_data.calculate_subject_pairs(subject_sample_map, desired_samples)

# Calculate which pairs of idxs belong to the same sample, which to the same subject
# and which to different subjects
desired_same_sample_idxs, desired_same_subject_idxs, desired_diff_subject_idxs = parse_midas_data.calculate_ordered_subject_pairs(
    sample_order_map, desired_samples)

snp_sample_idx_map = parse_midas_data.calculate_sample_idx_map(
    desired_samples, snp_samples)
gene_sample_idx_map = parse_midas_data.calculate_sample_idx_map(
    desired_samples, gene_samples)

same_sample_snp_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    snp_sample_idx_map, desired_same_sample_idxs)
same_sample_gene_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    gene_sample_idx_map, desired_same_sample_idxs)

same_subject_snp_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    snp_sample_idx_map, desired_same_subject_idxs)
same_subject_gene_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    gene_sample_idx_map, desired_same_subject_idxs)

diff_subject_snp_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    snp_sample_idx_map, desired_diff_subject_idxs)
Example #2
0
    variant_type='1D',
    min_change=min_change)
sys.stderr.write("Done!\n")

# Only plot samples above a certain depth threshold
high_coverage_samples = samples[median_coverages >= min_coverage]

high_coverage_low_pi_samples = samples[(median_coverages >= min_coverage) *
                                       (pis <= 1e-03)]

# Calculate which pairs of idxs belong to the same sample, which to the same subject
# and which to different subjects
high_coverage_same_sample_idxs, high_coverage_same_subject_idxs, high_coverage_diff_subject_idxs = parse_midas_data.calculate_subject_pairs(
    subject_sample_map, high_coverage_samples)

sample_idx_map = parse_midas_data.calculate_sample_idx_map(
    high_coverage_samples, samples)

same_sample_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    sample_idx_map, high_coverage_same_sample_idxs)
#
same_subject_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    sample_idx_map, high_coverage_same_subject_idxs)
#
diff_subject_idxs = parse_midas_data.apply_sample_index_map_to_indices(
    sample_idx_map, high_coverage_diff_subject_idxs)

# Calculate which pairs of idxs belong to the same sample, which to the same subject
# and which to different subjects
high_coverage_low_pi_same_sample_idxs, high_coverage_low_pi_same_subject_idxs, high_coverage_low_pi_diff_subject_idxs = parse_midas_data.calculate_subject_pairs(
    subject_sample_map, high_coverage_low_pi_samples)