Example #1
0
def get_workflows_and_jobs(project_id):

    project = client.projects.get(project_id)

    # Get workflow and the job data from the project
    workflows = [dict(workflow) for workflow in project['workflows']]
    table = Table(workflows)
    # We need to distinguish between jobs and workflows later on,
    # so adding a column noting these are workflows.
    table.add_column('object_type', 'workflow')

    # Imports and other scripts are separated out in the response but they are all treated as jobs
    # so we pull and combine
    jobs = [dict(job) for job in project['scripts']]
    imports = [dict(import_job) for import_job in project['imports']]
    full_list = jobs + imports
    jobs_table = Table(full_list)
    jobs_table.add_column('object_type', 'job')

    # Here we combine the table of jobs and imports into the table of workflows.
    # The object_type column lets us distinguish between the types,
    # which is necessary for the get_last_success function.
    table.concat(jobs_table)

    return table
Example #2
0
class TestParsonsTable(unittest.TestCase):
    def setUp(self):

        # Create Table object
        self.lst = [{
            'a': 1,
            'b': 2,
            'c': 3
        }, {
            'a': 4,
            'b': 5,
            'c': 6
        }, {
            'a': 7,
            'b': 8,
            'c': 9
        }, {
            'a': 10,
            'b': 11,
            'c': 12
        }, {
            'a': 13,
            'b': 14,
            'c': 15
        }]
        self.lst_dicts = [{'first': 'Bob', 'last': 'Smith'}]
        self.tbl = Table(self.lst_dicts)

        # Create a tmp dir
        os.mkdir('tmp')

    def tearDown(self):

        # Delete tmp folder and files
        shutil.rmtree('tmp')

    def test_from_list_of_dicts(self):

        tbl = Table(self.lst)

        # Test Iterate and is list like
        self.assertEqual(tbl[0], {'a': 1, 'b': 2, 'c': 3})

    def test_from_list_of_lists(self):

        list_of_lists = [
            ['a', 'b', 'c'],
            [1, 2, 3],
            [4, 5, 6],
        ]
        tbl = Table(list_of_lists)

        self.assertEqual(tbl[0], {'a': 1, 'b': 2, 'c': 3})

    def test_from_petl(self):

        nrows = 10
        ptbl = petl.dummytable(numrows=nrows)
        tbl = Table(ptbl)
        self.assertEqual(tbl.num_rows, nrows)

    def test_from_invalid_list(self):

        # Tests that a table can't be created from a list of invalid items
        list_of_invalid = [1, 2, 3]
        self.assertRaises(ValueError, Table, list_of_invalid)

    def test_from_empty_petl(self):
        self.assertRaises(ValueError, Table, None)

    def test_from_empty_list(self):
        # Just ensure this doesn't throw an error
        Table()
        Table([])
        Table([[]])

    def test_materialize(self):
        # Simple test that materializing doesn't change the table
        tbl_materialized = Table(self.lst_dicts)
        tbl_materialized.materialize()

        assert_matching_tables(self.tbl, tbl_materialized)

    def test_materialize_to_file(self):
        # Simple test that materializing doesn't change the table
        tbl_materialized = Table(self.lst_dicts)
        _ = tbl_materialized.materialize_to_file()

        assert_matching_tables(self.tbl, tbl_materialized)

    def test_empty_column(self):
        # Test that returns True on an empty column and False on a populated one.

        tbl = Table([['a', 'b'], ['1', None], ['2', None]])

        self.assertTrue(tbl.empty_column('b'))
        self.assertFalse(tbl.empty_column('a'))

    def test_from_columns(self):

        header = ['col1', 'col2']
        col1 = [1, 2, 3]
        col2 = ['a', 'b', 'c']
        tbl = Table.from_columns([col1, col2], header=header)

        self.assertEqual(tbl[0], {'col1': 1, 'col2': 'a'})

    # Removing this test since it is an optional dependency.
    """
    def test_from_datafame(self):

        import pandas

        # Assert creates table without index
        tbl = Table(self.lst)
        tbl_from_df = Table.from_dataframe(tbl.to_dataframe())
        assert_matching_tables(tbl, tbl_from_df)


    def test_to_dataframe(self):

        # Is a dataframe
        self.assertIsInstance(self.tbl.to_dataframe(), pandas.core.frame.DataFrame)
    """

    def test_to_petl(self):

        # Is a petl table
        self.assertIsInstance(self.tbl.to_petl(), petl.io.json.DictsView)

    def test_to_html(self):

        html_file = 'tmp/test.html'

        # Test writing file
        self.tbl.to_html(html_file)

        # Test written correctly
        html = ("<table class='petl'>\n"
                "<thead>\n"
                "<tr>\n"
                "<th>first</th>\n"
                "<th>last</th>\n"
                "</tr>\n"
                "</thead>\n"
                "<tbody>\n"
                "<tr>\n"
                "<td>Bob</td>\n"
                "<td>Smith</td>\n"
                "</tr>\n"
                "</tbody>\n"
                "</table>\n")
        with open(html_file, 'r') as f:
            self.assertEqual(f.read(), html)

    def test_to_temp_html(self):

        # Test write to object
        path = self.tbl.to_html()

        # Written correctly
        html = ("<table class='petl'>\n"
                "<thead>\n"
                "<tr>\n"
                "<th>first</th>\n"
                "<th>last</th>\n"
                "</tr>\n"
                "</thead>\n"
                "<tbody>\n"
                "<tr>\n"
                "<td>Bob</td>\n"
                "<td>Smith</td>\n"
                "</tr>\n"
                "</tbody>\n"
                "</table>\n")
        with open(path, 'r') as f:
            self.assertEqual(f.read(), html)

    def _assert_expected_csv(self, path, orig_tbl):
        result_tbl = Table.from_csv(path)
        assert_matching_tables(orig_tbl, result_tbl)

    def test_to_from_csv(self):
        path = 'tmp/test.csv'
        self.tbl.to_csv(path)
        self._assert_expected_csv(path, self.tbl)
        os.remove(path)

    def test_to_from_csv_compressed(self):
        path = 'tmp/test.csv.gz'
        self.tbl.to_csv(path)
        self._assert_expected_csv(path, self.tbl)
        os.remove(path)

    def test_to_from_temp_csv(self):
        path = self.tbl.to_csv()
        self._assert_expected_csv(path, self.tbl)

    def test_to_from_temp_csv_compressed(self):
        path = self.tbl.to_csv(temp_file_compression='gzip')
        self._assert_expected_csv(path, self.tbl)

    def test_from_csv_string(self):
        path = self.tbl.to_csv()
        # Pull the file into a string
        with open(path, 'r') as f:
            str = f.read()

        result_tbl = Table.from_csv_string(str)
        assert_matching_tables(self.tbl, result_tbl)

    def test_append_csv_compressed(self):
        path = self.tbl.to_csv(temp_file_compression='gzip')
        append_tbl = Table([{'first': 'Mary', 'last': 'Nichols'}])
        append_tbl.append_csv(path)

        result_tbl = Table.from_csv(path)
        # Combine tables, so we can check the resulting file
        self.tbl.concat(append_tbl)
        assert_matching_tables(self.tbl, result_tbl)

    def test_from_csv_raises_on_empty_file(self):
        # Create empty file
        path = 'tmp/empty.csv'
        open(path, 'a').close()

        self.assertRaises(ValueError, Table.from_csv, path)

    def test_to_csv_zip(self):

        try:
            # Test using the to_csv() method
            self.tbl.to_csv('myzip.zip')
            tmp = zip_archive.unzip_archive('myzip.zip')
            assert_matching_tables(self.tbl, Table.from_csv(tmp))

            # Test using the to_csv_zip() method
            self.tbl.to_zip_csv('myzip.zip')
            tmp = zip_archive.unzip_archive('myzip.zip')
            assert_matching_tables(self.tbl, Table.from_csv(tmp))
        finally:
            os.unlink('myzip.zip')

    def test_to_civis(self):

        # Not really sure the best way to do this at the moment.
        pass

    def test_to_from_json(self):
        path = 'tmp/test.json'
        self.tbl.to_json(path)

        result_tbl = Table.from_json(path)
        assert_matching_tables(self.tbl, result_tbl)
        os.remove(path)

    def test_to_from_json_compressed(self):
        path = 'tmp/test.json.gz'
        self.tbl.to_json(path)

        result_tbl = Table.from_json(path)
        assert_matching_tables(self.tbl, result_tbl)
        os.remove(path)

    def test_to_from_temp_json(self):
        path = self.tbl.to_json()
        result_tbl = Table.from_json(path)
        assert_matching_tables(self.tbl, result_tbl)

    def test_to_from_temp_json_compressed(self):
        path = self.tbl.to_json(temp_file_compression='gzip')
        result_tbl = Table.from_json(path)
        assert_matching_tables(self.tbl, result_tbl)

    def test_to_from_json_line_delimited(self):
        path = 'tmp/test.json'
        self.tbl.to_json(path, line_delimited=True)

        result_tbl = Table.from_json(path, line_delimited=True)
        assert_matching_tables(self.tbl, result_tbl)
        os.remove(path)

    def test_to_from_json_line_delimited_compressed(self):
        path = 'tmp/test.json.gz'
        self.tbl.to_json(path, line_delimited=True)

        result_tbl = Table.from_json(path, line_delimited=True)
        assert_matching_tables(self.tbl, result_tbl)
        os.remove(path)

    def test_columns(self):
        # Test that columns are listed correctly
        self.assertEqual(self.tbl.columns, ['first', 'last'])

    def test_add_column(self):
        # Test that a new column is added correctly
        self.tbl.add_column('middle', index=1)
        self.assertEqual(self.tbl.columns[1], 'middle')

    def test_column_add_dupe(self):
        # Test that we can't add an existing column name
        self.assertRaises(ValueError, self.tbl.add_column, 'first')

    def test_remove_column(self):
        # Test that column is removed correctly
        self.tbl.remove_column('first')
        self.assertNotEqual(self.tbl.data[0], 'first')

    def test_rename_column(self):
        # Test that you can rename a column
        self.tbl.rename_column('first', 'f')
        self.assertEqual(self.tbl.columns[0], 'f')

    def test_column_rename_dupe(self):
        # Test that we can't rename to a column that already exists
        self.assertRaises(ValueError, self.tbl.rename_column, 'last', 'first')

    def test_fill_column(self):
        # Test that the column is filled
        tbl = Table(self.lst)

        # Fixed Value
        tbl.fill_column('c', 0)
        self.assertEqual(list(tbl.table['c']), [0] * tbl.num_rows)

        # Calculated Value
        tbl.fill_column('c', lambda x: x['b'] * 2)
        self.assertEqual(list(tbl.table['c']), [x['b'] * 2 for x in self.lst])

    def test_fillna_column(self):
        # Test that None values in the column are filled

        self.lst = [{
            'a': 1,
            'b': 2,
            'c': 3
        }, {
            'a': 4,
            'b': 5,
            'c': None
        }, {
            'a': 7,
            'b': 8,
            'c': 9
        }, {
            'a': 10,
            'b': 11,
            'c': None
        }, {
            'a': 13,
            'b': 14,
            'c': 15
        }]

        # Fixed Value only
        tbl = Table(self.lst)
        tbl.fillna_column('c', 0)
        self.assertEqual(list(tbl.table['c']), [3, 0, 9, 0, 15])

    def test_move_column(self):
        # Test moving a column from end to front
        self.tbl.move_column('last', 0)
        self.assertEqual(self.tbl.columns[0], 'last')

    def test_convert_column(self):
        # Test that column updates
        self.tbl.convert_column('first', 'upper')
        self.assertEqual(self.tbl[0], {'first': 'BOB', 'last': 'Smith'})

    def test_convert_columns_to_str(self):
        # Test that all columns are string
        mixed_raw = [{
            'col1': 1,
            'col2': 2,
            'col3': 3
        }, {
            'col1': 'one',
            'col2': 2,
            'col3': [3, 'three', 3.0]
        }, {
            'col1': {
                'one': 1,
                "two": 2.0
            },
            'col2': None,
            "col3": 'three'
        }]
        tbl = Table(mixed_raw)
        tbl.convert_columns_to_str()

        cols = tbl.get_columns_type_stats()
        type_set = {i for x in cols for i in x['type']}
        self.assertTrue('str' in type_set and len(type_set) == 1)

    def test_convert_table(self):
        # Test that the table updates
        self.tbl.convert_table('upper')
        self.assertEqual(self.tbl[0], {'first': 'BOB', 'last': 'SMITH'})

    def test_coalesce_columns(self):
        # Test coalescing into an existing column
        test_raw = [
            {
                'first': 'Bob',
                'last': 'Smith',
                'lastname': None
            },
            {
                'first': 'Jane',
                'last': '',
                'lastname': 'Doe'
            },
            {
                'first': 'Mary',
                'last': 'Simpson',
                'lastname': 'Peters'
            },
        ]
        tbl = Table(test_raw)
        tbl.coalesce_columns('last', ['last', 'lastname'])

        expected = Table([
            {
                'first': 'Bob',
                'last': 'Smith'
            },
            {
                'first': 'Jane',
                'last': 'Doe'
            },
            {
                'first': 'Mary',
                'last': 'Simpson'
            },
        ])
        assert_matching_tables(tbl, expected)

        # Test coalescing into a new column
        tbl = Table(test_raw)
        tbl.coalesce_columns('new_last', ['last', 'lastname'])
        expected = Table([
            {
                'first': 'Bob',
                'new_last': 'Smith'
            },
            {
                'first': 'Jane',
                'new_last': 'Doe'
            },
            {
                'first': 'Mary',
                'new_last': 'Simpson'
            },
        ])
        assert_matching_tables(tbl, expected)

    def test_unpack_dict(self):

        test_dict = [{'a': 1, 'b': {'nest1': 1, 'nest2': 2}}]
        test_table = Table(test_dict)

        # Test that dict at the top level
        test_table.unpack_dict('b', prepend=False)
        self.assertEqual(test_table.columns, ['a', 'nest1', 'nest2'])

    def test_unpack_list(self):

        test_table = Table([{'a': 1, 'b': [1, 2, 3]}])

        # Test that list at the top level
        test_table.unpack_list('b', replace=True)
        self.assertEqual(['a', 'b_0', 'b_1', 'b_2'], test_table.columns)

    def test_unpack_list_with_mixed_col(self):

        # Test unpacking column with non-list items
        mixed_tbl = Table([{
            'id': 1,
            'tag': [1, 2, None, 4]
        }, {
            'id': 2,
            'tag': None
        }])
        tbl_unpacked = Table(mixed_tbl.unpack_list('tag'))

        # Make sure result has the right number of columns
        self.assertEqual(len(tbl_unpacked.columns), 5)

        result_table = Table([{
            'id': 1,
            'tag_0': 1,
            'tag_1': 2,
            'tag_2': None,
            'tag_3': 4
        }, {
            'id': 2,
            'tag_0': None,
            'tag_1': None,
            'tag_2': None,
            'tag_3': None
        }])

        # Check that the values for both rows are distributed correctly
        self.assertEqual(result_table.data[0] + result_table.data[1],
                         tbl_unpacked.data[0] + tbl_unpacked.data[1])

    def test_unpack_nested_columns_as_rows(self):

        # A Table with mixed content
        test_table = Table([{
            'id': 1,
            'nested': {
                'A': 1,
                'B': 2,
                'C': 3
            },
            'extra': 'hi'
        }, {
            'id': 2,
            'nested': {
                'A': 4,
                'B': 5,
                'I': 6
            },
            'extra': 'hi'
        }, {
            'id': 3,
            'nested': 'string!',
            'extra': 'hi'
        }, {
            'id': 4,
            'nested': None,
            'extra': 'hi'
        }, {
            'id': 5,
            'nested': ['this!', 'is!', 'a!', 'list!'],
            'extra': 'hi'
        }])

        standalone = test_table.unpack_nested_columns_as_rows('nested')

        # Check that the columns are as expected
        self.assertEqual(['uid', 'id', 'nested', 'value'], standalone.columns)

        # Check that the row count is as expected
        self.assertEqual(standalone.num_rows, 11)

        # Check that the uids are unique, indicating that each row is unique
        self.assertEqual(len({row['uid'] for row in standalone}), 11)

    def test_unpack_nested_columns_as_rows_expanded(self):

        test_table = Table([{
            'id': 1,
            'nested': {
                'A': 1,
                'B': 2,
                'C': 3
            },
            'extra': 'hi'
        }, {
            'id': 2,
            'nested': {
                'A': 4,
                'B': 5,
                'I': 6
            },
            'extra': 'hi'
        }, {
            'id': 3,
            'nested': 'string!',
            'extra': 'hi'
        }, {
            'id': 4,
            'nested': None,
            'extra': 'hi'
        }, {
            'id': 5,
            'nested': ['this!', 'is!', 'a!', 'list!'],
            'extra': 'hi'
        }])

        expanded = test_table.unpack_nested_columns_as_rows(
            'nested', expand_original=True)

        # Check that the columns are as expected
        self.assertEqual(['uid', 'id', 'extra', 'nested', 'nested_value'],
                         expanded.columns)

        # Check that the row count is as expected
        self.assertEqual(expanded.num_rows, 12)

        # Check that the uids are unique, indicating that each row is unique
        self.assertEqual(len({row['uid'] for row in expanded}), 12)

    def test_cut(self):

        # Test that the cut works correctly
        cut_tbl = self.tbl.cut('first')
        self.assertEqual(cut_tbl.columns, ['first'])

    def test_row_select(self):

        tbl = Table([['foo', 'bar', 'baz'], ['c', 4, 9.3], ['a', 2, 88.2],
                     ['b', 1, 23.3]])
        expected = Table([{'foo': 'a', 'bar': 2, 'baz': 88.2}])

        # Try with this method
        select_tbl = tbl.select_rows("{foo} == 'a' and {baz} > 88.1")
        self.assertEqual(select_tbl.data[0], expected.data[0])

        # And try with this method
        select_tbl2 = tbl.select_rows(
            lambda row: row.foo == 'a' and row.baz > 88.1)
        self.assertEqual(select_tbl2.data[0], expected.data[0])

    def test_remove_null_rows(self):

        # Test that null rows are removed from a single column
        null_table = Table([{'a': 1, 'b': 2}, {'a': 1, 'b': None}])
        self.assertEqual(null_table.remove_null_rows('b').num_rows, 1)

        # Teest that null rows are removed from multiple columns
        null_table = Table([{
            'a': 1,
            'b': 2,
            'c': 3
        }, {
            'a': 1,
            'b': None,
            'c': 3
        }])
        self.assertEqual(null_table.remove_null_rows(['b', 'c']).num_rows, 1)

    def test_long_table(self):

        # Create a long table, that is 4 rows long
        tbl = Table([{'id': 1, 'tag': [1, 2, 3, 4]}])
        self.assertEqual(tbl.long_table(['id'], 'tag').num_rows, 4)

        # Assert that column has been dropped
        self.assertEqual(tbl.columns, ['id'])

        # Assert that column has been retained
        tbl_keep = Table([{'id': 1, 'tag': [1, 2, 3, 4]}])
        tbl_keep.long_table(['id'], 'tag', retain_original=True)
        self.assertEqual(tbl_keep.columns, ['id', 'tag'])

    def test_long_table_with_na(self):

        # Create a long table that is 4 rows long
        tbl = Table([{'id': 1, 'tag': [1, 2, 3, 4]}, {'id': 2, 'tag': None}])
        self.assertEqual(tbl.long_table(['id'], 'tag').num_rows, 4)

        # Assert that column has been dropped
        self.assertEqual(tbl.columns, ['id'])

        # Assert that column has been retained
        tbl_keep = Table([{
            'id': 1,
            'tag': [1, 2, 3, 4]
        }, {
            'id': 2,
            'tag': None
        }])
        tbl_keep.long_table(['id'], 'tag', retain_original=True)
        self.assertEqual(tbl_keep.columns, ['id', 'tag'])

    def test_rows(self):
        # Test that there is only one row in the table
        self.assertEqual(self.tbl.num_rows, 1)

    def test_first(self):
        # Test that the first value in the table is returned.
        self.assertEqual(self.tbl.first, 'Bob')

        # Test empty value returns None
        empty_tbl = Table([[1], [], [3]])
        self.assertIsNone(empty_tbl.first)

    def test_get_item(self):
        # Test indexing on table

        # Test a valid column
        tbl = Table(self.lst)
        lst = [1, 4, 7, 10, 13]
        self.assertEqual(tbl['a'], lst)

        # Test a valid row
        row = {'a': 4, 'b': 5, 'c': 6}
        self.assertEqual(tbl[1], row)

    def test_column_data(self):
        # Test that that the data in the column is returned as a list

        # Test a valid column
        tbl = Table(self.lst)
        lst = [1, 4, 7, 10, 13]
        self.assertEqual(tbl.column_data('a'), lst)

        # Test an invalid column
        self.assertRaises(TypeError, tbl['c'])

    def test_row_data(self):

        # Test a valid column
        tbl = Table(self.lst)
        row = {'a': 4, 'b': 5, 'c': 6}
        self.assertEqual(tbl.row_data(1), row)

    def test_stack(self):
        tbl1 = self.tbl.select_rows(lambda x: x)
        tbl2 = Table([{'first': 'Mary', 'last': 'Nichols'}])
        # Different column names shouldn't matter for stack()
        tbl3 = Table([{'f': 'Lucy', 'l': 'Peterson'}])
        tbl1.stack(tbl2, tbl3)

        expected_tbl = Table(petl.stack(self.tbl.table, tbl2.table,
                                        tbl3.table))
        assert_matching_tables(expected_tbl, tbl1)

    def test_concat(self):
        tbl1 = self.tbl.select_rows(lambda x: x)
        tbl2 = Table([{'first': 'Mary', 'last': 'Nichols'}])
        tbl3 = Table([{'first': 'Lucy', 'last': 'Peterson'}])
        tbl1.concat(tbl2, tbl3)

        expected_tbl = Table(petl.cat(self.tbl.table, tbl2.table, tbl3.table))
        assert_matching_tables(expected_tbl, tbl1)

    def test_chunk(self):

        test_table = Table(petl.randomtable(3, 499, seed=42))
        chunks = test_table.chunk(100)

        # Assert rows of each is 100
        for c in chunks[:3]:
            self.assertEqual(100, c.num_rows)

        # Assert last table is 99
        self.assertEqual(99, chunks[4].num_rows)

    def test_match_columns(self):
        raw = [
            {
                'first name': 'Mary',
                'LASTNAME': 'Nichols',
                'Middle__Name': 'D'
            },
            {
                'first name': 'Lucy',
                'LASTNAME': 'Peterson',
                'Middle__Name': 'S'
            },
        ]
        tbl = Table(raw)

        desired_raw = [
            {
                'first_name': 'Mary',
                'middle_name': 'D',
                'last_name': 'Nichols'
            },
            {
                'first_name': 'Lucy',
                'middle_name': 'S',
                'last_name': 'Peterson'
            },
        ]
        desired_tbl = Table(desired_raw)

        # Test with fuzzy matching
        tbl.match_columns(desired_tbl.columns)
        assert_matching_tables(desired_tbl, tbl)

        # Test disable fuzzy matching, and fail due due to the missing cols
        self.assertRaises(TypeError,
                          Table(raw).match_columns,
                          desired_tbl.columns,
                          fuzzy_match=False,
                          if_missing_columns='fail')

        # Test disable fuzzy matching, and fail due to the extra cols
        self.assertRaises(TypeError,
                          Table(raw).match_columns,
                          desired_tbl.columns,
                          fuzzy_match=False,
                          if_extra_columns='fail')

        # Test table that already has the right columns, shouldn't need fuzzy match
        tbl = Table(desired_raw)
        tbl.match_columns(desired_tbl.columns,
                          fuzzy_match=False,
                          if_missing_columns='fail',
                          if_extra_columns='fail')
        assert_matching_tables(desired_tbl, tbl)

        # Test table with missing col, verify the missing col gets added by default
        tbl = Table([
            {
                'first name': 'Mary',
                'LASTNAME': 'Nichols'
            },
            {
                'first name': 'Lucy',
                'LASTNAME': 'Peterson'
            },
        ])
        tbl.match_columns(desired_tbl.columns)
        desired_tbl = (
            Table(desired_raw).remove_column('middle_name').add_column(
                'middle_name', index=1))
        assert_matching_tables(desired_tbl, tbl)

        # Test table with extra col, verify the extra col gets removed by default
        tbl = Table([
            {
                'first name': 'Mary',
                'LASTNAME': 'Nichols',
                'Age': 32,
                'Middle__Name': 'D'
            },
            {
                'first name': 'Lucy',
                'LASTNAME': 'Peterson',
                'Age': 26,
                'Middle__Name': 'S'
            },
        ])
        desired_tbl = Table(desired_raw)
        tbl.match_columns(desired_tbl.columns)
        assert_matching_tables(desired_tbl, tbl)

        # Test table with two columns that normalize the same and aren't in desired cols, verify
        # they both get removed.
        tbl = Table([
            {
                'first name': 'Mary',
                'LASTNAME': 'Nichols',
                'Age': 32,
                'Middle__Name': 'D',
                'AGE': None
            },
            {
                'first name': 'Lucy',
                'LASTNAME': 'Peterson',
                'Age': 26,
                'Middle__Name': 'S',
                'AGE': None
            },
        ])
        tbl.match_columns(desired_tbl.columns)
        assert_matching_tables(desired_tbl, tbl)

        # Test table with two columns that match desired cols, verify only the first gets kept.
        tbl = Table([
            {
                'first name': 'Mary',
                'LASTNAME': 'Nichols',
                'First Name': None,
                'Middle__Name': 'D'
            },
            {
                'first name': 'Lucy',
                'LASTNAME': 'Peterson',
                'First Name': None,
                'Middle__Name': 'S'
            },
        ])
        tbl.match_columns(desired_tbl.columns)
        assert_matching_tables(desired_tbl, tbl)

    def test_to_dicts(self):
        self.assertEqual(self.lst, Table(self.lst).to_dicts())
        self.assertEqual(self.lst_dicts, self.tbl.to_dicts())

    def test_reduce_rows(self):
        table = [['foo', 'bar'], ['a', 3], ['a', 7], ['b', 2], ['b', 1],
                 ['b', 9], ['c', 4]]
        expected = [{
            "foo": "a",
            "barsum": 10
        }, {
            "foo": "b",
            "barsum": 12
        }, {
            "foo": "c",
            "barsum": 4
        }]

        ptable = Table(table)

        ptable.reduce_rows(
            'foo', lambda key, rows: [key, sum(row[1] for row in rows)],
            ['foo', 'barsum'])

        self.assertEqual(expected, ptable.to_dicts())

    def test_map_columns_exact(self):

        input_tbl = Table([['fn', 'ln', 'MID'], ['J', 'B', 'H']])

        column_map = {
            'first_name': ['fn', 'first'],
            'last_name': ['last', 'ln'],
            'middle_name': ['mi']
        }

        exact_tbl = Table([['first_name', 'last_name', 'MID'], ['J', 'B',
                                                                'H']])
        input_tbl.map_columns(column_map)
        assert_matching_tables(input_tbl, exact_tbl)

    def test_map_columns_fuzzy(self):

        input_tbl = Table([['fn', 'ln', 'Mi_'], ['J', 'B', 'H']])

        column_map = {
            'first_name': ['fn', 'first'],
            'last_name': ['last', 'ln'],
            'middle_name': ['mi']
        }

        fuzzy_tbl = Table([['first_name', 'last_name', 'middle_name'],
                           ['J', 'B', 'H']])
        input_tbl.map_columns(column_map, exact_match=False)
        assert_matching_tables(input_tbl, fuzzy_tbl)

    def test_get_column_max_with(self):

        tbl = Table([['a', 'b', 'c'],
                     ['wide_text', False, 'slightly longer text'],
                     ['text', 2, 'byte_text🏽‍⚕️✊🏽🤩']])

        # Basic test
        self.assertEqual(tbl.get_column_max_width('a'), 9)

        # Doesn't break for non-strings
        self.assertEqual(tbl.get_column_max_width('b'), 5)

        # Evaluates based on byte length rather than char length
        self.assertEqual(tbl.get_column_max_width('c'), 33)

    def test_sort(self):

        # Test basic sort
        unsorted_tbl = Table([['a', 'b'], [3, 1], [2, 2], [1, 3]])
        sorted_tbl = unsorted_tbl.sort()
        self.assertEqual(sorted_tbl[0], {'a': 1, 'b': 3})

        # Test column sort
        unsorted_tbl = Table([['a', 'b'], [3, 1], [2, 2], [1, 3]])
        sorted_tbl = unsorted_tbl.sort('b')
        self.assertEqual(sorted_tbl[0], {'a': 3, 'b': 1})

        # Test reverse sort
        unsorted_tbl = Table([['a', 'b'], [3, 1], [2, 2], [1, 3]])
        sorted_tbl = unsorted_tbl.sort(reverse=True)
        self.assertEqual(sorted_tbl[0], {'a': 3, 'b': 1})

    def test_set_header(self):

        # Rename columns
        tbl = Table([['one', 'two'], [1, 2], [3, 4]])
        new_tbl = tbl.set_header(['oneone', 'twotwo'])

        self.assertEqual(new_tbl[0], {'oneone': 1, 'twotwo': 2})

        # Change number of columns
        tbl = Table([['one', 'two'], [1, 2], [3, 4]])
        new_tbl = tbl.set_header(['one'])

        self.assertEqual(new_tbl[0], {'one': 1})

    def test_bool(self):
        empty = Table()
        not_empty = Table([{'one': 1, 'two': 2}])

        self.assertEqual(not empty, True)
        self.assertEqual(not not_empty, False)

    def test_use_petl(self):
        # confirm that this method doesn't exist for parsons.Table
        self.assertRaises(AttributeError, getattr, Table, 'skipcomments')

        tbl = Table([['col1', 'col2'], [
            '# this is a comment row',
        ], ['a', 1], ['#this is another comment', 'this is also ignored'],
                     ['b', 2]])
        tbl_expected = Table([['col1', 'col2'], ['a', 1], ['b', 2]])

        tbl_after = tbl.use_petl('skipcomments', '#')
        assert_matching_tables(tbl_expected, tbl_after)

        tbl.use_petl('skipcomments', '#', update_table=True)
        assert_matching_tables(tbl_expected, tbl)

        from petl.util.base import Table as PetlTable
        tbl_petl = tbl.use_petl('skipcomments', '#', to_petl=True)
        self.assertIsInstance(tbl_petl, PetlTable)