Example #1
0
def main(args):
    dist.init_process_group(backend='nccl', init_method='env://')
    local_rank = args.local_rank
    torch.cuda.set_device(local_rank)
    rank = dist.get_rank()
    world_size = dist.get_world_size()

    if not os.path.exists(cfg.output) and rank is 0:
        os.makedirs(cfg.output)
    else:
        time.sleep(2)

    log_root = logging.getLogger()
    init_logging(log_root, rank, cfg.output)
    trainset = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank)
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        trainset, shuffle=True)
    train_loader = DataLoaderX(local_rank=local_rank,
                               dataset=trainset,
                               batch_size=cfg.batch_size,
                               sampler=train_sampler,
                               num_workers=0,
                               pin_memory=True,
                               drop_last=True)

    dropout = 0.4 if cfg.dataset is "webface" else 0
    backbone = eval("backbones.{}".format(args.network))(
        False, dropout=dropout, fp16=cfg.fp16).to(local_rank)

    if args.resume:
        try:
            backbone_pth = os.path.join(cfg.output, "backbone.pth")
            backbone.load_state_dict(
                torch.load(backbone_pth,
                           map_location=torch.device(local_rank)))
            if rank is 0:
                logging.info("backbone resume successfully!")
        except (FileNotFoundError, KeyError, IndexError, RuntimeError):
            logging.info("resume fail, backbone init successfully!")

    for ps in backbone.parameters():
        dist.broadcast(ps, 0)
    backbone = torch.nn.parallel.DistributedDataParallel(
        module=backbone, broadcast_buffers=False, device_ids=[local_rank])
    backbone.train()

    margin_softmax = eval("losses.{}".format(args.loss))()
    module_partial_fc = PartialFC(rank=rank,
                                  local_rank=local_rank,
                                  world_size=world_size,
                                  resume=args.resume,
                                  batch_size=cfg.batch_size,
                                  margin_softmax=margin_softmax,
                                  num_classes=cfg.num_classes,
                                  sample_rate=cfg.sample_rate,
                                  embedding_size=cfg.embedding_size,
                                  prefix=cfg.output)

    opt_backbone = torch.optim.SGD(params=[{
        'params': backbone.parameters()
    }],
                                   lr=cfg.lr / 512 * cfg.batch_size *
                                   world_size,
                                   momentum=0.9,
                                   weight_decay=cfg.weight_decay)
    opt_pfc = torch.optim.SGD(params=[{
        'params': module_partial_fc.parameters()
    }],
                              lr=cfg.lr / 512 * cfg.batch_size * world_size,
                              momentum=0.9,
                              weight_decay=cfg.weight_decay)

    scheduler_backbone = torch.optim.lr_scheduler.LambdaLR(
        optimizer=opt_backbone, lr_lambda=cfg.lr_func)
    scheduler_pfc = torch.optim.lr_scheduler.LambdaLR(optimizer=opt_pfc,
                                                      lr_lambda=cfg.lr_func)

    start_epoch = 0
    total_step = int(
        len(trainset) / cfg.batch_size / world_size * cfg.num_epoch)
    if rank is 0: logging.info("Total Step is: %d" % total_step)

    callback_verification = CallBackVerification(2000, rank, cfg.val_targets,
                                                 cfg.rec)
    callback_logging = CallBackLogging(50, rank, total_step, cfg.batch_size,
                                       world_size, None)
    callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output)

    loss = AverageMeter()
    global_step = 0
    grad_scaler = MaxClipGradScaler(
        cfg.batch_size, 128 *
        cfg.batch_size, growth_interval=100) if cfg.fp16 else None
    for epoch in range(start_epoch, cfg.num_epoch):
        train_sampler.set_epoch(epoch)
        for step, (img, label) in enumerate(train_loader):
            global_step += 1
            features = F.normalize(backbone(img))
            x_grad, loss_v = module_partial_fc.forward_backward(
                label, features, opt_pfc)
            if cfg.fp16:
                features.backward(grad_scaler.scale(x_grad))
                grad_scaler.unscale_(opt_backbone)
                clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
                grad_scaler.step(opt_backbone)
                grad_scaler.update()
            else:
                features.backward(x_grad)
                clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
                opt_backbone.step()

            opt_pfc.step()
            module_partial_fc.update()
            opt_backbone.zero_grad()
            opt_pfc.zero_grad()
            loss.update(loss_v, 1)
            callback_logging(global_step, loss, epoch, cfg.fp16, grad_scaler)
            callback_verification(global_step, backbone)
        callback_checkpoint(global_step, backbone, module_partial_fc)
        scheduler_backbone.step()
        scheduler_pfc.step()
    dist.destroy_process_group()
Example #2
0
def main(args):
    world_size = int(1.0)
    rank = int(0.0)
    local_rank = args.local_rank

    if not os.path.exists(cfg.output):
        os.makedirs(cfg.output)
    else:
        time.sleep(2)

    if not os.path.exists(cfg.output):
        os.makedirs(cfg.output)
    else:
        time.sleep(2)

    writer = LogWriter(logdir=cfg.logdir)

    trainset = MXFaceDataset(root_dir=cfg.rec)
    train_loader = DataLoader(dataset=trainset,
                              batch_size=cfg.batch_size,
                              shuffle=True,
                              drop_last=True,
                              num_workers=0)

    dropout = 0.4 if cfg.dataset == "webface" else 0
    backbone = eval("backbones.{}".format(args.network))(False,
                                                         dropout=0.5,
                                                         fp16=False)
    backbone.train()

    clip_by_norm = ClipGradByNorm(5.0)
    margin_softmax = eval("losses.{}".format(args.loss))()

    module_partial_fc = PartialFC(rank=0,
                                  local_rank=0,
                                  world_size=1,
                                  resume=0,
                                  batch_size=cfg.batch_size,
                                  margin_softmax=margin_softmax,
                                  num_classes=cfg.num_classes,
                                  sample_rate=cfg.sample_rate,
                                  embedding_size=cfg.embedding_size,
                                  prefix=cfg.output)

    scheduler_backbone = paddle.optimizer.lr.LambdaDecay(learning_rate=cfg.lr /
                                                         512 * cfg.batch_size,
                                                         lr_lambda=cfg.lr_func,
                                                         verbose=True)
    opt_backbone = paddle.optimizer.SGD(parameters=backbone.parameters(),
                                        learning_rate=scheduler_backbone,
                                        weight_decay=cfg.weight_decay,
                                        grad_clip=clip_by_norm)
    scheduler_pfc = paddle.optimizer.lr.LambdaDecay(learning_rate=cfg.lr /
                                                    512 * cfg.batch_size,
                                                    lr_lambda=cfg.lr_func,
                                                    verbose=True)
    opt_pfc = paddle.optimizer.SGD(parameters=module_partial_fc.parameters(),
                                   learning_rate=scheduler_pfc,
                                   weight_decay=cfg.weight_decay,
                                   grad_clip=clip_by_norm)

    start_epoch = 0
    total_step = int(
        len(trainset) / cfg.batch_size / world_size * cfg.num_epoch)
    if rank == 0:
        print("Total Step is: %d" % total_step)

    callback_verification = CallBackVerification(2000, rank, cfg.val_targets,
                                                 cfg.rec)
    callback_logging = CallBackLogging(100, rank, total_step, cfg.batch_size,
                                       world_size, writer)
    callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output)

    loss = AverageMeter()
    global_step = 0
    grad_scaler = MaxClipGradScaler(
        cfg.batch_size, 128 *
        cfg.batch_size, growth_interval=100) if cfg.fp16 else None
    for epoch in range(start_epoch, cfg.num_epoch):
        for step, (img, label) in enumerate(train_loader):
            label = label.flatten()
            global_step += 1
            features = F.normalize(backbone(img))
            x_grad, loss_v = module_partial_fc.forward_backward(
                label, features, opt_pfc)
            if cfg.fp16:
                scaled = grad_scaler.scale(x_grad)
                (features.multiply(scaled)).backward()
                grad_scaler._unscale(opt_backbone)
                grad_scaler.minimize(opt_backbone, scaled)
            else:
                (features.multiply(x_grad)).backward()
                opt_backbone.step()
            opt_pfc.step()
            module_partial_fc.update()
            opt_backbone.clear_gradients()
            opt_pfc.clear_gradients()
            loss.update(loss_v, 1)
            callback_logging(global_step, loss, epoch, cfg.fp16, grad_scaler)
            callback_verification(global_step, backbone)
        callback_checkpoint(global_step, backbone, module_partial_fc)
        scheduler_backbone.step()
        scheduler_pfc.step()
    writer.close()
Example #3
0
def main(args):
    world_size = int(1.0)
    rank = int(0.0)

    if not os.path.exists(args.output):
        os.makedirs(args.output)
    else:
        time.sleep(2)

    writer = LogWriter(logdir=args.logdir)
    trainset = CommonDataset(root_dir=cfg.data_dir, label_file=cfg.file_list, is_bin=args.is_bin)
    train_loader = DataLoader(
        dataset=trainset,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=True,
        num_workers=0)

    backbone = eval("backbones.{}".format(args.network))()
    backbone.train()

    clip_by_norm = ClipGradByNorm(5.0)
    margin_softmax = eval("losses.{}".format(args.loss))()

    module_partial_fc = PartialFC(
        rank=0,
        world_size=1,
        resume=0,
        batch_size=args.batch_size,
        margin_softmax=margin_softmax,
        num_classes=cfg.num_classes,
        sample_rate=cfg.sample_rate,
        embedding_size=args.embedding_size,
        prefix=args.output)

    scheduler_backbone_decay = paddle.optimizer.lr.LambdaDecay(
        learning_rate=args.lr, lr_lambda=cfg.lr_func, verbose=True)
    scheduler_backbone = paddle.optimizer.lr.LinearWarmup(
        learning_rate=scheduler_backbone_decay,
        warmup_steps=cfg.warmup_epoch,
        start_lr=0,
        end_lr=args.lr / 512 * args.batch_size,
        verbose=True)
    opt_backbone = paddle.optimizer.Momentum(
        parameters=backbone.parameters(),
        learning_rate=scheduler_backbone,
        momentum=0.9,
        weight_decay=args.weight_decay,
        grad_clip=clip_by_norm)

    scheduler_pfc_decay = paddle.optimizer.lr.LambdaDecay(
        learning_rate=args.lr, lr_lambda=cfg.lr_func, verbose=True)
    scheduler_pfc = paddle.optimizer.lr.LinearWarmup(
        learning_rate=scheduler_pfc_decay,
        warmup_steps=cfg.warmup_epoch,
        start_lr=0,
        end_lr=args.lr / 512 * args.batch_size,
        verbose=True)
    opt_pfc = paddle.optimizer.Momentum(
        parameters=module_partial_fc.parameters(),
        learning_rate=scheduler_pfc,
        momentum=0.9,
        weight_decay=args.weight_decay,
        grad_clip=clip_by_norm)

    start_epoch = 0
    total_step = int(
        len(trainset) / args.batch_size / world_size * cfg.num_epoch)
    if rank == 0:
        print("Total Step is: %d" % total_step)

    callback_verification = CallBackVerification(2000, rank, cfg.val_targets,
                                                 cfg.data_dir)
    callback_logging = CallBackLogging(10, rank, total_step, args.batch_size,
                                       world_size, writer)
    callback_checkpoint = CallBackModelCheckpoint(rank, args.output,
                                                  args.network)

    loss = AverageMeter()
    global_step = 0
    for epoch in range(start_epoch, cfg.num_epoch):
        for step, (img, label) in enumerate(train_loader):
            label = label.flatten()
            global_step += 1
            sys.stdout.flush()
            features = F.normalize(backbone(img))
            x_grad, loss_v = module_partial_fc.forward_backward(
                label, features, opt_pfc)
            sys.stdout.flush()
            (features.multiply(x_grad)).backward()
            sys.stdout.flush()
            opt_backbone.step()
            opt_pfc.step()
            module_partial_fc.update()
            opt_backbone.clear_gradients()
            opt_pfc.clear_gradients()
            sys.stdout.flush()

            lr_backbone_value = opt_backbone._global_learning_rate().numpy()[0]
            lr_pfc_value = opt_backbone._global_learning_rate().numpy()[0]

            loss.update(loss_v, 1)
            callback_logging(global_step, loss, epoch, lr_backbone_value,
                             lr_pfc_value)
            sys.stdout.flush()
            callback_verification(global_step, backbone)
        callback_checkpoint(global_step, backbone, module_partial_fc)
        scheduler_backbone.step()
        scheduler_pfc.step()
    writer.close()
Example #4
0
def main(args):
    os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
    cfg = get_config(args.config)

    try:
        world_size = int(os.environ['WORLD_SIZE'])
        rank = int(os.environ['RANK'])
        dist.init_process_group('nccl')
    except KeyError:
        world_size = 1
        rank = 0
        dist.init_process_group(backend='nccl',
                                init_method="tcp://127.0.0.1:12584",
                                rank=rank,
                                world_size=world_size)

    local_rank = args.local_rank
    torch.cuda.set_device(local_rank)
    os.makedirs(cfg.output, exist_ok=True)
    init_logging(rank, cfg.output)

    if cfg.rec == "synthetic":
        train_set = SyntheticDataset(local_rank=local_rank)
    else:
        train_set = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank)

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_set, shuffle=True)
    train_loader = DataLoaderX(local_rank=local_rank,
                               dataset=train_set,
                               batch_size=cfg.batch_size,
                               sampler=train_sampler,
                               num_workers=2,
                               pin_memory=True,
                               drop_last=True)
    backbone = get_model(cfg.network,
                         dropout=0.0,
                         fp16=cfg.fp16,
                         num_features=cfg.embedding_size).to(local_rank)
    summary(backbone, input_size=(3, 112, 112))
    exit()

    if cfg.resume:
        try:
            backbone_pth = os.path.join(cfg.output, "backbone.pth")
            backbone.load_state_dict(
                torch.load(backbone_pth,
                           map_location=torch.device(local_rank)))
            if rank == 0:
                logging.info("backbone resume successfully!")
        except (FileNotFoundError, KeyError, IndexError, RuntimeError):
            if rank == 0:
                logging.info("resume fail, backbone init successfully!")

    backbone = torch.nn.parallel.DistributedDataParallel(
        module=backbone, broadcast_buffers=False, device_ids=[local_rank])
    backbone.train()
    if cfg.loss == 'magface':
        margin_softmax = losses.get_loss(cfg.loss, lambda_g=cfg.lambda_g)
    elif cfg.loss == 'mag_cosface':
        margin_softmax = losses.get_loss(cfg.loss)
    else:
        margin_softmax = losses.get_loss(cfg.loss,
                                         s=cfg.s,
                                         m1=cfg.m1,
                                         m2=cfg.m2,
                                         m3=cfg.m3)
    module_partial_fc = PartialFC(rank=rank,
                                  local_rank=local_rank,
                                  world_size=world_size,
                                  resume=cfg.resume,
                                  batch_size=cfg.batch_size,
                                  margin_softmax=margin_softmax,
                                  num_classes=cfg.num_classes,
                                  sample_rate=cfg.sample_rate,
                                  embedding_size=cfg.embedding_size,
                                  prefix=cfg.output)

    opt_backbone = torch.optim.SGD(params=[{
        'params': backbone.parameters()
    }],
                                   lr=cfg.lr / 512 * cfg.batch_size *
                                   world_size,
                                   momentum=0.9,
                                   weight_decay=cfg.weight_decay)
    opt_pfc = torch.optim.SGD(params=[{
        'params': module_partial_fc.parameters()
    }],
                              lr=cfg.lr / 512 * cfg.batch_size * world_size,
                              momentum=0.9,
                              weight_decay=cfg.weight_decay)

    num_image = len(train_set)
    total_batch_size = cfg.batch_size * world_size
    cfg.warmup_step = num_image // total_batch_size * cfg.warmup_epoch
    cfg.total_step = num_image // total_batch_size * cfg.num_epoch

    def lr_step_func(current_step):
        cfg.decay_step = [
            x * num_image // total_batch_size for x in cfg.decay_epoch
        ]
        if current_step < cfg.warmup_step:
            return current_step / cfg.warmup_step
        else:
            return 0.1**len([m for m in cfg.decay_step if m <= current_step])

    scheduler_backbone = torch.optim.lr_scheduler.LambdaLR(
        optimizer=opt_backbone, lr_lambda=lr_step_func)
    scheduler_pfc = torch.optim.lr_scheduler.LambdaLR(optimizer=opt_pfc,
                                                      lr_lambda=lr_step_func)

    for key, value in cfg.items():
        num_space = 25 - len(key)
        logging.info(": " + key + " " * num_space + str(value))

    val_target = cfg.val_targets
    callback_verification = CallBackVerification(2000, rank, val_target,
                                                 cfg.rec)
    callback_logging = CallBackLogging(50, rank, cfg.total_step,
                                       cfg.batch_size, world_size, None)
    callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output)

    loss = AverageMeter()
    start_epoch = 0
    global_step = 0
    grad_amp = MaxClipGradScaler(
        cfg.batch_size, 128 *
        cfg.batch_size, growth_interval=100) if cfg.fp16 else None
    for epoch in range(start_epoch, cfg.num_epoch):
        train_sampler.set_epoch(epoch)
        for step, (img, label) in enumerate(train_loader):
            global_step += 1
            x = backbone(img)
            features = F.normalize(x)
            x_grad, loss_v = module_partial_fc.forward_backward(
                label, features, opt_pfc, x)
            if cfg.fp16:
                features.backward(grad_amp.scale(x_grad))
                grad_amp.unscale_(opt_backbone)
                clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
                grad_amp.step(opt_backbone)
                grad_amp.update()
            else:
                features.backward(x_grad)
                clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
                opt_backbone.step()

            opt_pfc.step()
            module_partial_fc.update()
            opt_backbone.zero_grad()
            opt_pfc.zero_grad()
            loss.update(loss_v, 1)
            callback_logging(global_step, loss, epoch, cfg.fp16,
                             scheduler_backbone.get_last_lr()[0], grad_amp)
            callback_verification(global_step, backbone)
            scheduler_backbone.step()
            scheduler_pfc.step()
        callback_checkpoint(global_step, backbone, module_partial_fc)

    callback_verification('last', backbone)
    dist.destroy_process_group()