def test_train_predict_prob_XGBC_yeast3(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/yeast3.yaml") yeast3 = inputer.transform() y = yeast3[inputer.target].values X = yeast3[yeast3.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/XGBC.yaml") learner.train(X, y, checkpoint="yeast3LGBMC.ckp") assert learner.predict_proba(X).shape == (1484, 2)
def test_train_predict_prob_XGBC_creditdard(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/creditcard.yaml") creditdard = inputer.transform() y = creditdard[inputer.target].values X = creditdard[creditdard.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/XGBC.yaml") learner.train(X, y, checkpoint="creditdardLGBMC.ckp") assert learner.predict_proba(X).shape == (284807, 2)
def test_train_predict_prob_LGBC_wine(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/wine.yaml") wine = inputer.transform() y = wine[inputer.target].values X = wine[wine.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") learner.train(X, y, target=inputer.target, checkpoint="wineLGBMC.ckp") assert learner.predict_proba(X).shape == (178, 3)
def test_train_predict_prob_LGBC(): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") diabetes = inputer.transform() y = diabetes[inputer.target].values X = diabetes[diabetes.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") learner.train(X, y, checkpoint="diabetesLGBMC.ckp") assert learner.predict_proba(X).shape == (768, 2)
def test_learn_model_name(): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/RFC.yaml") learner.train(X, y, checkpoint="RandomForest.ckp") assert learner.model_name == "RandomForest"
def test_learn_train_predict_XGBC(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/wine.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/XGBC.yaml") learner.train(X, y, checkpoint="LGBMClassifier.ckp") assert learner.predict(X).shape == (178, )
def test_learn_train_predict_prob_LGBC(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/otto_group.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") learner.train(X, y, checkpoint="otto_group_LGBMC.ckp") assert learner.predict(X).shape == (61878, )
def test_learn_train_kw_target_pima(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/wine.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/RFC.yaml") learner.train(X, y, checkpoint="diabetesRandomForest1.ckp") assert learner.trained == True
def test_learn_train_no_y(): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] o = Learners( description_filepath="../../descriptions/learners/RFC.sm.yaml") with pytest.raises(IndexError): o.train(X) == o
def test_evaluate_otto_group(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/otto_group.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/XGBC.yaml") learner.train(X, y, checkpoint="pima_LGBMC.ckp") assert len(learner.evaluate(X, y).keys()) == 7
def test_predict_Prob_error(): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") diabetes = inputer.transform() learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") # learner.train( # diabetes, target=inputer.target, checkpoint="diabetesLGBMC.ckp" # ) X = diabetes X_train = X[X.columns.difference([inputer.target])] with pytest.raises(PasoError): assert learner.predict_proba(X_train).shape == (768, 2)
def test_learner_cross_validate_RFC_iris_milticlass_evaluate_test_accuracy(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/iris.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/RFC.yaml") learner.train(X, y, checkpoint="pima_LGBMC.ckp") score = learner.cross_validate( X, y, cv_description_filepath= "../../descriptions/learners/Cross_validation_classification.yaml", ) assert score["mean"]["test_accuracy"] >= 0.95
def test_learn_train_kw_target_iris(flower): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] o = Learners( description_filepath="../../descriptions/learners/RFC.sm.yaml") assert inputer.target == "Outcome"
def test_learner_cross_validate_LGBC(): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") learner.train(X, y, checkpoint="pima_LGBMC.ckp") learner.cross_validate( X, y, cv_description_filepath= "../../descriptions/learners/Cross_validation_classification.yaml", ) assert len(learner.evaluate(X, y).keys()) == 9
def test_learner_cross_validate_RFC_iris_multiclass_evaluate_AO(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/iris.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/RFC.yaml") learner.train(X, y, checkpoint="iris)RC.ckp") learner.cross_validate( X, y, cv_description_filepath= "../../descriptions/learners/Cross_validation_classification.yaml", ) assert learner.evaluate(X, y)["accuracy"] == 1.0
def test_cross_validaters(): learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") assert len(learner.cross_validaters()) == 3
def test_learners(): learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") assert len(learner.learners()) == 16
def test_learn_train_description_file_not_exist(flower): o = Learners( description_filepath="../../descriptions/learners/RandomForest.yaml") with pytest.raises(PasoError): o.train(flower) == o