def main(fips, county): #county = 'Lubbock' #fips = '303' figures = [] #Fulfills the 'Number' Column of the Table county_data_2010_number = api.api_request( p.frankenstein(p.table_7_call_2010_number, fips)) county_data_2000_number = api.api_request( p.frankenstein(p.table_7_call_2000_number, fips)) #Fulfills the 'Avg. HH Size' Column of the Table county_data_2010 = api.api_request( p.frankenstein(p.table_7_call_2010, fips)) county_data_2000 = api.api_request( p.frankenstein(p.table_7_call_2000, fips)) #All necessary data prior to 2000 county_data_1990 = get_excel_data(p.table7_excel_1990, county, 1990) county_data_1980 = get_excel_data(p.table7_excel_1980, county, 1980) county_data_2010 = table7_string_converter(pop.splitter(county_data_2010)) county_data_2000 = table7_string_converter(pop.splitter(county_data_2000)) county_data_2010_number = pop.string_converter( "county", pop.splitter(county_data_2010_number)) county_data_2000_number = pop.string_converter( "county", pop.splitter(county_data_2000_number)) table7 = make_table7(county, county_data_2010, county_data_2000, county_data_2010_number, county_data_2000_number, county_data_1990, county_data_1980) figures.append(table7) figure4 = make_figure4(county, county_data_2010, county_data_2000, county_data_1990, county_data_1980) figures.append(figure4) plt.close() plt.cla() """ #Gets written to Excel writer = pd.ExcelWriter('output.xlsx', engine='xlsxwriter') workbook = writer.book worksheet = workbook.add_worksheet('Table 7') writer.sheets['Table 7'] = worksheet worksheet.write_string(0, 0, table7.name) table7.to_excel(writer, sheet_name='Table 7', startrow=1, startcol=0) """ return figures
def get_nominal(county, base_year, fips): #Read file for data prior to 2000 income_data = pd.read_excel("Historical_Median_Income_TXcounties1969-89.xlsx") income_data = income_data.loc[income_data['Name'] == county] #Only a figure for the base year is needed. #Source of this data is determined by these conditional statements looking #For both County Specified and Base Year if(base_year == float(2000)): if(county == "State of Texas"): nominal = api.api_request("https://api.census.gov/data/2000/sf3?get=HCT012001,NAME&for=state:48&key=" + p.census_api_key) nominal = pop.string_converter("state", pop.splitter(nominal)) else: nominal = api.api_request(p.frankenstein(p.nominal2000, fips)) nominal = pop.string_converter("county", pop.splitter(nominal)) nominal = float(nominal["HCT012001"]) elif(base_year < float(2000)): nominal = income_data[base_year].values[0] else: if(county == "State of Texas"): nominal = api.api_request("https://api.census.gov/data/"+ str(base_year) +"/acs/acs1?get=NAME,B19013_001E&for=state:48&key=" + p.census_api_key) nominal = pop.string_converter("state", pop.splitter(nominal)) else: nominal = api.api_request(p.acs_frankenstein(str(base_year), "B19013_001E", fips, "1")) if(nominal is None): return None else: nominal = popt.table3_string_converter(pop.splitter(nominal)) nominal = float(nominal["B19013_001E"]) return nominal
def base_year_data(fips): called_data = api_request(p.frankenstein(p.table1_call_2010, fips)) called_data = pop.string_converter('county', pop.splitter(called_data)) #print(called_data) converted_data = float(called_data['P001001']) return converted_data
def main(fips, county): figures = [] data_TDC = pd.read_csv(p.table3_excel, sep=r'\,|\t', engine='python') #Make call to API for data population_ACS = api_request(p.frankenstein(p.table_3_call, fips)) data_ACS = table3_string_converter(pop.splitter(population_ACS)) table3 = make_table3(data_ACS, data_TDC, 2012, fips) figures.append(table3) plt.close() table4 = make_table4(data_TDC, fips, county) figures.append(table4) """ print(table3) print(table4) """ figure3 = make_figure3(data_TDC, fips, county) figures.append(figure3) return figures
def make_table5(fips, county): group_quarter_data = group_quarters_array(fips) column_2 = table_5_other_columns(fips, "2011") column_3 = table_5_other_columns(fips, "2012") data_2010 = api.api_request(p.frankenstein(p.table1_call_2010, fips)) data_2010 = pop.string_converter("county", pop.splitter(data_2010)) total_population_2010 = float(data_2010["P001001"]) percent_of_population_2010 = "{0:.2%}".format(float(group_quarter_data[0])/total_population_2010) group_quarter_data.append(percent_of_population_2010) table5 = pd.DataFrame({"2010": group_quarter_data, "2011": column_2, "2012": column_3}) table5 = table5.rename(index={0: "Total", 1: "Correctional Institutions", 2: "Juvenile Institutions", 3: "Nursing Homes", 4: "Other Institutions", 5: "Total Institutional", 6: "College Dorms", 7: "Military Quarters", 8: "Other Non-Institutional", 9: "Total Non-Institutional", 10: "Percent of Total Population"}) table5.name = "Recent Trends in Group Quarters Population for " + county + " County" return table5
def group_quarters_array(fips): #Make calls to the API #2010 total_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_total, fips)) correctional_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_correctional, fips)) juvenile_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_juvenile, fips)) nursing_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_nursing, fips)) other_institutional_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_otherinstitutional, fips)) total_institutional_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_totalinstitutional, fips)) dorms_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_dorms, fips)) military_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_military, fips)) other_noninstitutional_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_othernoninstitutional, fips)) total_noninstitutional_2010 = api.api_request(p.frankenstein(p.table_5_call_2010_totalnoninstitutional, fips)) #Turn these requests into something readable total_2010 = pop.string_converter("county", pop.splitter(total_2010)) correctional_2010 = pop.string_converter("county", pop.splitter(correctional_2010)) juvenile_2010 = pop.string_converter("county", pop.splitter(juvenile_2010)) nursing_2010 = pop.string_converter("county", pop.splitter(nursing_2010)) other_institutional_2010 = pop.string_converter("county", pop.splitter(other_institutional_2010)) total_institutional_2010 = pop.string_converter("county", pop.splitter(total_institutional_2010)) dorms_2010 = pop.string_converter("county", pop.splitter(dorms_2010)) military_2010 = pop.string_converter("county", pop.splitter(military_2010)) other_noninstitutional_2010 = pop.string_converter("county", pop.splitter(other_noninstitutional_2010)) total_noninstitutional_2010 = pop.string_converter("county", pop.splitter(total_noninstitutional_2010)) #Make an array group_quarter_data = [total_2010["P029026"], correctional_2010["PCT020003"], juvenile_2010["PCT020010"], nursing_2010["P042005"], other_institutional_2010["PCT020015"], total_institutional_2010["P042002"], dorms_2010["P042008"], military_2010["P042009"], other_noninstitutional_2010["PCT020026"], total_noninstitutional_2010["P029028"]] return group_quarter_data
def main(fips): figures = [] #variables containing state data state_data_2010 = api_request(p.table1_call_state_2010) print("this is the data after api requst: ", type(state_data_2010)) state_data_2010 = string_converter('state', splitter(state_data_2010)) state_population_2010 = float(state_data_2010['P001001']) state_data_2000 = api_request(p.table1_call_state_2000) print("TEST TEST TEST:", state_data_2000) state_data_2000 = string_converter('state', splitter(state_data_2000)) state_population_2000 = float(state_data_2000['P001001']) state_population_1970 = find_population("000", 48, 1970, data) state_population_1980 = find_population("000", 48, 1980, data) state_population_1990 = find_population("000", 48, 1990, data) #variables containing census data data_2010 = api_request(p.frankenstein(p.table1_call_2010, fips)) data_2010 = string_converter('county', splitter(data_2010)) population_2010 = float(data_2010['P001001']) data_2000 = api_request(p.frankenstein(p.table1_call_2000, fips)) data_2000 = string_converter('county', splitter(data_2000)) population_2000 = float(data_2000['P001001']) population_1970 = find_population(data_2010['county'], data_2010['state'], 1970, data) population_1980 = find_population(data_2010['county'], data_2010['state'], 1980, data) population_1990 = find_population(data_2010['county'], data_2010['state'], 1990, data) figure1 = make_figure1(population_1970, population_1980, population_1990, population_2000, population_2010, data_2010) figures.append(figure1) plt.close() table1 = make_table1(state_population_2010, state_population_2000, state_population_1990, state_population_1980, state_population_1970, population_2010, population_2000, population_1990, population_1980, population_1970, data_2010) figures.append(table1) figure2 = make_figure2(state_population_2010, state_population_2000, state_population_1990, state_population_1980, state_population_1970, population_2010, population_2000, population_1990, population_1980, population_1970, data_2010) plt.close() figures.append(figure2) table2 = make_table2(state_population_2010, state_population_2000, state_population_1990, state_population_1980, state_population_1970, population_2010, population_2000, population_1990, population_1980, population_1970, data_2010) figures.append(table2) """ #Prints to Console figure1.show() print(table1) figure2.show() print(table2) #Gets written to Excel writer = pd.ExcelWriter('output.xlsx', engine='xlsxwriter') workbook = writer.book worksheet = workbook.add_worksheet('Results') writer.sheets['Results'] = worksheet worksheet.write_string(0, 0, table1.name) table1.to_excel(writer, sheet_name='Results', startrow=1, startcol=0) worksheet.write_string(table1.shape[0] + 4, 0, table2.name) table2.to_excel(writer,sheet_name='Results', startrow=table1.shape[0]+5, startcol=0) #figure1.to_excel('output.xlsx', sheet_name='figures', engine='xlsxwriter') writer.save() """ return figures