Example #1
0
 def __init__(self, df: pd.DataFrame, table: str, date_range: str,
              column_sort: str):
     self._df = df
     self._table_name = table
     self._table = StockDatabase().get_table_by_name(self._table_name)
     self._date_range = date_range
     self._columns = self._df.columns
     self._sort_column = column_sort
     self._rows = []
     self.__fill_rows_for_selected_table__()
 def __init__(self,
              std_dev_range=30,
              len_learning_range=30,
              train_model=False,
              number_symbols=1,
              manipulation_type=MT.ONE_ROW_PER_VALUE,
              breakout_level_threshold=0):
     self._std_dev_range = std_dev_range
     self._len_learning_range = len_learning_range
     self._db_stock = StockDatabase()
     self._manipulation_type = manipulation_type
     self._breakout_level_threshold = breakout_level_threshold
     self._list = [
         'MMM', 'MCD', 'MRK', 'MSFT', 'MAR', 'MXIM', 'MCHP', 'MU', 'MNST',
         'MYL', 'MDLZ', 'MELI'
     ]
     self._symbols = self._list[:number_symbols]
     self._col_value_dict = {
         DC.OPEN: 1,
         DC.LOW: 2,
         DC.HIGH: 3,
         DC.CLOSE: 4,
         DC.VOLUME: 5
     }
     self._col_value_dict = {DC.OPEN: 1, DC.CLOSE: 4, DC.VOLUME: 5}
     if train_model:
         self.__train_model__()
 def add_wave_tick_lists(self):
     access_layer_stock = AccessLayer4Stock(StockDatabase())
     trade_entity = self.get_first_element()
     while trade_entity is not None:
         symbol = trade_entity.symbol
         ts_list = [
             trade_entity.ts_before_pattern, trade_entity.ts_pattern_start,
             trade_entity.ts_pattern_end, trade_entity.ts_trade_max
         ]
         wave_tick_lists = access_layer_stock.get_wave_tick_lists_for_time_stamp_intervals(
             symbol, ts_list)
         trade_entity.wave_tick_list_before_pattern = wave_tick_lists[0]
         trade_entity.wave_tick_list_pattern = wave_tick_lists[1]
         trade_entity.wave_tick_list_after_breakout = wave_tick_lists[2]
         trade_entity = self.get_next_element()
Example #4
0
class DBTable:
    def __init__(self, df: pd.DataFrame, table: str, date_range: str,
                 column_sort: str):
        self._df = df
        self._table_name = table
        self._table = StockDatabase().get_table_by_name(self._table_name)
        self._date_range = date_range
        self._columns = self._df.columns
        self._sort_column = column_sort
        self._rows = []
        self.__fill_rows_for_selected_table__()

    @property
    def columns(self):
        return self._columns

    @property
    def height_for_display(self):
        height = max(100, 50 + len(self._rows) * 40)
        if height > 400:
            return 400
        return max(100, height)

    def get_rows_for_selected_items(self):
        if len(self._rows) == 0:
            return [DBRow(self._columns).get_row_as_dict()]
        DBRow.sort_column = self._sort_column
        sort_reverse = True
        sorted_list = sorted(self._rows, reverse=sort_reverse)
        return [row.get_row_as_dict() for row in sorted_list]

    def get_table_style_cell_conditional(self) -> list:
        cols_left = self._table.get_string_column_names()
        return [{
            'if': {
                'column_id': c
            },
            'textAlign': 'left'
        } for c in cols_left]

    def __fill_rows_for_selected_table__(self):
        self._rows = []
        if self._table_name != '':
            for index, row in self._df.iterrows():
                db_row = DBRow(self._columns)
                for column in self._columns:
                    db_row.add_value(column, row[column])
                self._rows.append(db_row)
 def __init__(self, stock_db: StockDatabase = None):
     self._base_value = 1000.0
     self._stock_db = StockDatabase() if stock_db is None else stock_db
     self._access_layer_stocks = AccessLayer4Stock(self._stock_db)
     self._columns = [
         'Symbol', 'Timestamp', 'Date', 'Time', 'Open', 'High', 'Low',
         'Close', 'Volume'
     ]
     self._index = self.__get_index__()
     self._period = PRD.DAILY
     self._aggregation = 1
     self._total_volume_average = 0
     self._index_elements = 0
     self._index_element_dict = {}
     self.__fill_ticker_element_dict__()
     self.__adjust_to_total_average_volume__()
 def __init__(self,
              pattern_type=FT.CHANNEL,
              period=PRD.DAILY,
              mean_aggregation=4,
              number_trades=math.inf,
              pattern_id='',
              compare_with_orig=True):
     self._pattern_type = pattern_type
     self._period = period
     self._mean_aggregation = mean_aggregation
     self._number_trades = number_trades
     self._pattern_id = pattern_id
     self._compare_with_orig = compare_with_orig
     self._trade_access_layer = AccessLayer4Trade(StockDatabase())
     self._trade_entity_collection = None
     self._trade_policy = None
     self.__fill_trade_entity_collection__()
     self._print_details_per_trade = False
Example #7
0
 def __init__(self,
              for_semi_deep_copy=False,
              with_predictor=True,
              run_on_server=False):
     # print('SystemConfiguration.__init__: for_semi_deep_copy={}'.format(for_semi_deep_copy))
     self.run_on_server = run_on_server
     self.file_log = PatternLog()
     self.runtime_config = RuntimeConfiguration()
     self.crypto_config = BitfinexConfiguration()
     self.exchange_config = self.crypto_config
     self.exchange_config.small_profit_parameter_dict = self.__get_small_profit_parameter_dict__(
     )
     self.shares_config = IBKRConfiguration()
     self.sound_machine = PatternSoundMachine()
     self.process_manager = PatternProcessManager()
     if for_semi_deep_copy:
         return
     self.config = PatternConfiguration()
     self.db_stock = StockDatabase()
     self.index_config = IndexConfiguration(
         self.db_stock, INDICES.get_index_list_for_index_configuration())
     self.pattern_table = PatternTable()
     self.trade_table = TradeTable()
     self.wave_table = WaveTable()
     self.asset_table = AssetTable()
     self.df_cache = MyDataFrameCache()
     self.graph_cache = MyGraphCache()
     self.data_provider = PatternDataProvider(self.config,
                                              self.index_config,
                                              self.db_stock, self.df_cache,
                                              self.run_on_server)
     if with_predictor:
         self.predictor_optimizer = PatternPredictorOptimizer(self.db_stock)
         self.fibonacci_predictor = FibonacciPredictor(self.db_stock, 7)
         self.fibonacci_wave_data_handler = FibonacciWaveDataHandler(
             self.db_stock)
         self.master_predictor_handler = PatternMasterPredictorHandler(
             self.__get_pattern_predictor_api__(self.config))
         self.trade_strategy_optimizer = TradeOptimizer(
             self.db_stock, self.expected_win_pct)
Example #8
0
Author: Josef Sertl
Copyright: SERTL Analytics, https://sertl-analytics.com
Date: 2018-05-14
"""

from pattern_database.stock_database import StockDatabase
from sertl_analytics.constants.pattern_constants import PRD, WAVEST, INDICES
from fibonacci.fibonacci_wave_data import FibonacciWaveDataHandler


class FWDHTC:  # FibonacciWaveDataHandler TestCase
    RELOAD = 'Reload'
    HEAT_MAP = 'Heatmap'


fibonacci_wave_data_handler = FibonacciWaveDataHandler(StockDatabase())
fibonacci_wave_data_handler.load_data(period=PRD.DAILY, aggregation=1)

test_case = FWDHTC.HEAT_MAP

if test_case == FWDHTC.RELOAD:
    fibonacci_wave_data_handler.reload_data_when_outdated()
elif test_case == FWDHTC.HEAT_MAP:
    period = PRD.DAILY
    aggregation = 1
    index = INDICES.Q_FSE
    fibonacci_wave_data_handler.init_tick_key_list_for_retrospection(
        100, period=period, aggregation=aggregation)
    x_data = fibonacci_wave_data_handler.tick_key_list_for_retrospection
    y_data = WAVEST.get_waves_types_for_processing(
        [fibonacci_wave_data_handler.period_for_retrospection])
Example #9
0
"""
Description: This module contains tests for both classes IndexConfiguration and IndicesComponentFetcher
Author: Josef Sertl
Copyright: SERTL Analytics, https://sertl-analytics.com
Date: 2019-01-15
"""

from sertl_analytics.constants.pattern_constants import INDICES, EQUITY_TYPE
from sertl_analytics.datafetcher.web_data_fetcher import IndicesComponentFetcher
from pattern_index_configuration import IndexConfiguration
from pattern_database.stock_database import StockDatabase

# indices_component_list = IndicesComponentFetcher.get_ticker_name_dic(INDICES.CRYPTO_CCY)
# print(indices_component_list.items())

index_configuration = IndexConfiguration(
    StockDatabase(), INDICES.get_index_list_for_index_configuration())
symbol = 'MMM'
index = index_configuration.get_index_for_symbol(symbol)
print('Index for symbol {}={}'.format(symbol, index))
Example #10
0
 def __perform_task__(self):
     db_stock = StockDatabase()
     db_stock.update_stock_data_by_index(INDICES.FOREX, PRD.DAILY)
Example #11
0
 def __perform_task__(self):
     db_stock = StockDatabase()
     db_stock.update_stock_data_by_index(INDICES.INDICES, PRD.DAILY)
     db_stock.update_stock_data_by_index(INDICES.DOW_JONES, PRD.DAILY)
     db_stock.update_stock_data_for_symbol('MRAM')
     db_stock.update_stock_data_for_symbol('FCEL')
     db_stock.update_stock_data_for_symbol('TSLA')
     db_stock.update_stock_data_for_symbol('GE')
     db_stock.update_stock_data_by_index(INDICES.NASDAQ100, PRD.DAILY)
     db_stock.update_stock_data_by_index(INDICES.Q_FSE, PRD.DAILY)
     self._db_updater.calculate_index_list(
         [INDICES.NASDAQ100, INDICES.Q_FSE])
Example #12
0
 def __perform_task__(self):
     db_stock = StockDatabase()
     exchange_config = BitfinexConfiguration()
     db_stock.update_crypto_currencies(
         PRD.DAILY, symbol_list=exchange_config.ticker_id_list)
Example #13
0
 def __perform_task__(self):
     db_stock = StockDatabase()
     db_stock.delete_duplicate_records(db_stock.trade_table)
     db_stock.delete_duplicate_records(db_stock.pattern_table)
     db_stock.delete_duplicate_records(db_stock.wave_table)
Example #14
0
 def __get_db__(self):
     return StockDatabase()
Example #15
0
"""
Description: This module contains test cases for the Fibonacci wave predictions
Author: Josef Sertl
Copyright: SERTL Analytics, https://sertl-analytics.com
Date: 2019-02-20
"""

from pattern_database.stock_database import StockDatabase
from fibonacci.fibonacci_predictor import FibonacciPredictor
from sertl_analytics.constants.pattern_constants import PRED, STBL, FT, DC, MT, MDC, WPC


label = DC.WAVE_END_FLAG
# label = DC.WAVE_MAX_RETR_PCT
# label = DC.WAVE_MAX_RETR_TS_PCT
fib_prediction = FibonacciPredictor(StockDatabase(), 5)
# fib_prediction.train_models_for_label(label)
# fib_prediction.perform_cross_validation(label)





Example #16
0
 def __get_df_secondary__():
     # ToDo - this should only be available at the deferred class...
     return StockDatabase().get_trade_records_for_statistics_as_dataframe()
 def __init__(self, stock_db: StockDatabase = None):
     self._stock_db = StockDatabase() if stock_db is None else stock_db
     self._table = self.__get_table__()
class AccessLayer:
    def __init__(self, stock_db: StockDatabase = None):
        self._stock_db = StockDatabase() if stock_db is None else stock_db
        self._table = self.__get_table__()

    @property
    def table_name(self):
        return self._table.name

    def get_all_as_data_frame(self,
                              index_col='',
                              columns=None,
                              where_clause=''):
        selected_columns = '*' if columns is None else ','.join(columns)
        where_clause_new = '' if where_clause == '' else ' WHERE {}'.format(
            where_clause)
        return self.select_data_by_query(
            "SELECT {} from {}{}".format(selected_columns, self._table.name,
                                         where_clause_new), index_col)

    def get_all_as_data_dict(self, index_col: str):
        df = self.select_data_by_query(
            "SELECT * from {}".format(self._table.name), index_col)
        return df.to_dict(orient='index')

    def get_as_data_dict_by_data_dict(self,
                                      data_dict: dict,
                                      sort_columns=None,
                                      index_col=''):
        df = self.select_data_by_data_dict(data_dict,
                                           target_columns=None,
                                           sort_columns=sort_columns,
                                           index_col=index_col)
        return df.to_dict(orient='index')

    def select_data_by_data_dict(self,
                                 data_dict: dict,
                                 target_columns=None,
                                 sort_columns=None,
                                 index_col='') -> pd.DataFrame:
        query = self._table.get_query_select_by_data_dict(
            data_dict, target_columns, sort_columns)
        db_df = DatabaseDataFrame(self._stock_db, query)
        return self.__get_dataframe_with_index_column__(db_df.df, index_col)

    def select_data_by_query(self, query: str, index_col='') -> pd.DataFrame:
        db_df = DatabaseDataFrame(self._stock_db, query)
        return self.__get_dataframe_with_index_column__(db_df.df, index_col)

    @staticmethod
    def __get_dataframe_with_index_column__(df: pd.DataFrame, index_col: str):
        if not df.empty and index_col != '':
            df.set_index(index_col, drop=False, inplace=True)
        return df

    def insert_data(self, input_dict_list: list):
        self._stock_db.insert_data_into_table(self._table.name,
                                              input_dict_list)

    def update_record(self, record_id: str, data_dict: dict):
        # Syntax: UPDATE users SET field1='value1', field2='value2'
        pass

    def delete_record_by_id(self, record_id: str):
        pass

    def delete_record_by_rowid(self, rowid: int):
        query = self._table.get_query_delete_by_row_id(rowid)
        print(query)
        self._stock_db.delete_records(query)

    def delete_existing_record(self, data_dict: dict):
        df = self.__get_data_frame_with_row_id__(data_dict)
        if df.shape[0] > 0:
            self.delete_record_by_rowid(df.iloc[0][DC.ROWID])
        else:
            print('Nothing to delete for table {}: {}'.format(
                self._table.name, data_dict))

    def is_record_available(self, data_dict: dict):
        df = self.__get_data_frame_with_row_id__(data_dict)
        return df.shape[0] > 0

    def are_any_records_available(self, data_dict: dict):
        df = self.__get_data_frame_with_row_id__(data_dict)
        return df.shape[0] > 0

    def __get_data_frame_with_row_id__(self, data_dict: dict) -> pd.DataFrame:
        query = self._table.get_query_select_by_data_dict(data_dict)
        return self.__get_data_frame_with_row_id_by_query__(query)

    def __get_data_frame_with_row_id_by_query__(self,
                                                query: str) -> pd.DataFrame:
        db_df = DatabaseDataFrame(self._stock_db, query)
        return db_df.df

    def __get_table__(self) -> MyTable:
        pass

    def get_update_set_clause_from_data_dict(self, data_dict: dict):
        return self._table.get_update_set_clause_from_data_dict(data_dict)
"""
Description: This module starts the stock database processes (create tables, update data, ...)
CAUTION: This script is NOT saved on git hub.
Author: Josef Sertl
Copyright: SERTL Analytics, https://sertl-analytics.com
Date: 2018-06-10
"""

from pattern_database.stock_database import StockDatabase
from pattern_database.stock_index_handler import IndexHandler
from sertl_analytics.constants.pattern_constants import INDICES

stock_db = StockDatabase()
index_handler = IndexHandler(index=INDICES.NASDAQ100,
                             db_stock=stock_db,
                             save_to_database=False)
index_handler.calculate_index_data_frame()
Example #20
0
"""
Description: This module contains test cases for access layer methods
Author: Josef Sertl
Copyright: SERTL Analytics, https://sertl-analytics.com
Date: 2018-05-14
"""

from pattern_database.stock_index_data_frame import IndexDataFrame
from pattern_database.stock_database import StockDatabase

db_stock = StockDatabase()
index_data_frame = IndexDataFrame(db_stock)

index_data_frame.print_details()
# index_data_frame.get_index_data_frame_for_date_range('2019-01-01', '2020-01-01')
"""
Description: This module starts the stock database processes (create tables, update data, ...)
CAUTION: This script is NOT saved on git hub.
Author: Josef Sertl
Copyright: SERTL Analytics, https://sertl-analytics.com
Date: 2018-06-10
"""

from pattern_database.stock_database import StockDatabase

stock_db = StockDatabase()
# stock_db.create_pattern_feature_table()
# stock_db.create_pattern_table()
stock_db.create_pattern_view()
# stock_db.create_wave_view()
# symbol_list = ['MMM', 'NVDA', 'EURUSD', 'BTCUSD']
# for symbol in symbol_list:
#     print('Index for {}: {}'.format(symbol, stock_db.get_index_for_symbol(symbol)))
Example #22
0
 def __init__(self):
     self._trade_access_layer = AccessLayer4Trade(StockDatabase())
     self.__init_parameters__()