sheet_name='Sub_States')
print(distribution_info)
print("HELLO DOLLY")
print(distribution_info.loc[('Elagolix Approved', 'Clean Approval')])
#distribution_df = distribution_info.reset_index().set_index('State')
# Create a Scenario where the Core Probability of Success is .90.
crl = distribution_info.loc['CRL']
crl_substate = crl.loc['CRL - No Hope']
crl_substate.loc['Price'] = 1000
substates = list(crl.iterrows())
print("HELLO STACEY")
print(substates)
for substate in substates:
    print(type(substate), len(substate), type(substate[0]), type(substate[1]))
    print("HELLO SUSAN")
    tprint(distribution_info.loc['CRL'].loc[substate[0], :], "\n")
    tprint(substate[1], "\n")

    distribution_info.loc['CRL'].loc[substate[0], :] = substate[1].T
    distribution_info.loc[('CRL', substate[0])] = substate[1]

print(distribution_info)


def change_core_scenario(distribution_df, new_core_scenario):
    print(distribution_info.loc['CRL'])


#change_core_scenario(distribution_df, 'hi')

evt1.hello = 'HelloThere'
evt1.name='Sup'
print(Event.__dict__)
print(evt1.__dict__)
print(Paul.__class__, p.__class__)

print(dir(Paul), "\n-------------------")
print(dir(p), "\n''''''''''''''''''")

print(vars(Paul) is Paul.__dict__, vars(Paul) == Paul.__dict__)
print(vars(Paul))
print(p.__dict__)
print(p.__doc__)

print(Paul.__dict__, "\n''''''''''''''''''''")
tprint(Paul.__dict__['__dict__'])

print(Paul().__dict__)


print(Paul, Paul()) 
print(paul_resources.Aaron, paul_resources.Aaron())
print(Aaron, Aaron())
print(Paul.__name__, Aaron.__name__, main_function.__name__)
print("HERE:", str(p), repr(p), str(p) is repr(p), str(p) == repr(p))
print(Paul.__module__, Aaron.__module__, main_function.__module__)
print(p.__module__)
print(Paul.__doc__)

print(paul_resources.daily_returns)
print(main_function)
Example #3
0
                        2: 'HV',
                        3: 'Alpha_Ratio',
                        4: 'Adj_Alpha_Ratio',
                        5: 'Sample_Size'
                    },
                    inplace=True)
    alpha_df.set_index('Stock', inplace=True)
    return alpha_df


stocks = PriceTable.columns.values.tolist()
stocks = [i for i in stocks if i in {'AAPL', 'GOOG', 'FB', 'AMZN'}]

prices_df = PriceTable.loc[:, stocks]
alpha_df = alpha_df(prices_df, 252)
tprint(stocks)
print(alpha_df.sort_values('Adj_Alpha_Ratio', ascending=False))


def graph():
    values = alpha_df['Adj_Alpha_Ratio'].tolist()
    bins = np.arange(-5.5, 6.5, 1)

    plt.hist(values, bins, histtype='bar', rwidth=.8)

    plt.xlabel('Adj_Alpha_Ratio')
    plt.ylabel('Frequency')
    plt.title('S&P 500 Alpha Distribution')
    plt.legend()
    plt.show()
Example #4
0
                         index_col = [0,1],
                         sheet_name = 'TimingMappings')
TimingMappings = TimingMappings.reset_index().set_index('level_1').loc[:, ['Start', 'End']]

mappings = pd.read_excel('TimingMappings.xlsx',
                         header = [0,1],
                         index_col = [0,1],
                         sheet_name = 'TimingMappings')
print(mappings)
print(mappings.index.values)
print(mappings.index.names)
print(mappings.columns.values)
print(mappings.columns.names)
my_slice = mappings.loc[('Halves', '1H'), ('Start', 'Day')]
my_slice = mappings.loc['Halves', ('Start', 'Day')]
tprint(my_slice)
my_slice = mappings.xs('Quarters')
print(my_slice)
my_slice = mappings.reset_index().set_index('level_1').loc[:, ['Start', 'End']]
print(my_slice)
my_slice = my_slice.loc['1H', ('Start', 'Month')]
print(my_slice)

years = descriptors.loc[:, 'Years'].dropna().tolist()
guidance = descriptors.loc[:, 'Guidance'].dropna().tolist()
halves = descriptors.loc[:, 'Halves'].dropna().tolist()
months = descriptors.loc[:, 'Months'].dropna().tolist()
weeks = descriptors.loc[:, 'Weeks'].dropna().tolist()

def get_event_start_date_from_timing_descriptor(timing_descriptor):
    timing_period = timing_descriptor[0:-5]
Example #5
0
    stock2 = 'AAPL'
    index = 'QQQ'
    beta_lookback = 252
    chart_lookback = beta_lookback

    base = 100
    beta = Beta(stock, index, beta_lookback, ScrubParams(.075, .01, .8)).beta
    beta2 = Beta(stock2, index, beta_lookback, ScrubParams(.075, .01, .8)).beta
    #beta, beta2 = 0.0, 0.0

    # Stock Lines to plot
    stock_line = StockLineSimple(stock, chart_lookback, base)
    index_line = StockLineSimple(index, chart_lookback, base)
    stock_line_adj = StockLineBetaAdjusted(stock, chart_lookback, beta, index,
                                           base)
    tprint(stock_line_adj.prices_df.round(2))

    stock_line_adj2 = StockLineBetaAdjusted(stock2, chart_lookback, beta2,
                                            index, base)

    stock_lines = [
        stock_line.stock_line(color='red'),
        index_line.stock_line(color='black'),
        stock_line_adj.stock_line(color='blue'),
        #stock_line_adj2.stock_line(color = 'c')
    ]
    StockChart(stock_lines).run()

    Beta(stock, index, beta_lookback, ScrubParams(.075, .01,
                                                  .8)).show_scrub_trajectory()